ESTIMATED STATE FEEDBACK FUZZY CONTROL FOR PASSIVE DISCRETE TIME-DELAY MULTIPLICATIVE NOISED PENDULUM SYSTEMS

Wen-Jer Chang, Chun-Hung Lin, and Cheung-Chieh Ku

Key words: T-S fuzzy model, multiplicative noise, parallel distributed compensation, passivity theory, discrete Jensen inequality.

ABSTRACT

This paper develops a fuzzy controller design method via estimated state feedback scheme for discrete-time nonlinear stochastic time-delay systems which are presented by Takagi–Sugeno fuzzy model with multiplicative noises. The proposed design method is accomplished by the concept of parallel distributed compensation. Using the Lyapunov-Krasovskii function and passivity theory, the stability conditions are derived to guarantee the stability and attenuation performance. An algorithm is proposed in this paper to solve the derived stability conditions that belong to non-strict linear matrix inequality problems. Moreover, the discrete Jensen inequality and free-weighting matrix technique are employed to decrease the conservatism of the proposed design method. Finally, the control of a nonlinear time-delay pendulum system is provided to illustrate the effectiveness and usefulness of the proposed fuzzy control method.

I. INTRODUCTION

Takagi–Sugeno (T-S) fuzzy model (Tseng and Chen, 2001) is a well-known popular tool to describe nonlinear systems in terms of fuzzy sets. In the T-S fuzzy model, the linear subsystems in the consequence part of IF-THEN rules are proposed to describe the local dynamics of nonlinear systems. Based on the T-S fuzzy model, stability and stabilization problems of the nonlinear systems have been investigated through quadratic Lyapunov function. According to the Lyapunov stability theory, sufficient conditions are derived to guarantee the stability of all local subsystems. These sufficient stability conditions depend on the existence of a common positive definite matrix. Moreover, the concept of Parallel Distributed Compensation (PDC) (Tanaka and Wang, 2001) is applied to design the fuzzy controller for T-S fuzzy model by blending several linear subcontrollers with the same premise variable of the T-S fuzzy model. Many literatures (Tanaka and Wang, 2001; Tseng and Chen, 2001; Hwang and Lin, 2004; Hsiao et al., 2005a; Hsiao et al., 2005b; Wang and Lin, 2005; Chang and Chang, 2006; Lin et al., 2007; Dong and Yang, 2009; Ma and Boukas, 2009; Chang et al., 2012; Chang et al., 2013; Chang and Huang, 2014) have discussed the stability and stabilization problems of nonlinear systems via T-S fuzzy model and PDC technique. Most of the above literatures are state feedback case or output feedback case. However, both of state feedback and output feedback schemes can no longer be applied under the conditions of unmeasurable states. Hence, several authors have proposed fuzzy observer design method (Choi, 2007; Tseng, 2008; Chen and Chang, 2009; Kim and Park, 2009; Tseng and Chen, 2009; Gassara et al., 2010; Wen and Ren, 2010) for the nonlinear systems represented by T-S fuzzy modeling technique. According to the above-mentioned motivations, the fuzzy control via estimated state feedback scheme for the discrete-time nonlinear stochastic time-delay systems is thus investigated in this paper.

The stochastic behaviors of systems are usually implied as unmeasured signals and considered as disturbance effects on systems. In order to study the stochastic behaviors, the fuzzy control of nonlinear stochastic systems has been discussed via T-S fuzzy model (Chang et al., 2010; Ku et al., 2010; Chang et al., 2011; Chang et al., 2012, Chang and Huang, 2014). In (Chang et al., 2010; Ku et al., 2010; Chang et al., 2011; Chang et al., 2012, Chang and Huang, 2014), the consequence part of T-S fuzzy model is described as stochastic differential equations (Eli et al., 2005). Via stochastic differential equations, the stochastic systems are structured as deterministic systems with multiplicative noise terms. The T-S fuzzy model with multiplicative noise has been widely employed to propose the...
stability criteria for the nonlinear stochastic systems. Besides, the time delay and external disturbance are common and wicked phenomenon in many industry and engineering systems. They are usually the source of instability or poor performance of dynamic control systems (Chang et al., 2010; Ku et al., 2010; Liang et al., 2010; Chang et al., 2011; Chang et al., 2012, Chang and Huang, 2014). The control issues of nonlinear time-delay systems have attracted much interest via T-S fuzzy model (Chang and Chang, 2005; Hsiao et al., 2005b; Yang et al., 2005; Lin et al., 2008). Moreover, the disturbance effects are usually caused by external perturbations in the environments. For attenuating these effects, dissipative theory and its special case passivity theory have been used to discuss the energy change of external disturbance in the control systems (Wang et al., 2003; Chang et al., 2010; Ku et al., 2010; Liang et al., 2010; Chang et al., 2014). According to the results of (Lozano et al., 2001), one can find that the passivity theory includes several control schemes such as positive real theory, H_{∞} control scheme, L_2 control scheme and so on.

In this paper, a fuzzy control via estimated state feedback scheme for the discrete-time nonlinear stochastic systems with time delay is discussed and investigated by using the T-S fuzzy model. Applying passivity theory and Lyapunov theory, the sufficient conditions are derived to guarantee the stability of the considered T-S fuzzy systems. Besides, the discrete Jensen inequality (Zhu and Yang., 2008) and free-weighting matrix technique (Souza et al., 2009) are employed to reduce the conservatism of the proposed stability conditions. Since the derived stability conditions do not belong to strict Linear Matrix Inequality (LMI) problems, cone complementarity (Ghaoui et al., 1997) is used to provide a sub-optimal algorithm to solve the non-strict LMI conditions. After solving the non-strict LMI stability conditions, an observer-based fuzzy controller can be constructed to stabilize the closed-loop system based on the PDC technique. Finally, a numerical example for the control of a nonlinear pendulum system is provided to demonstrate the application and effectiveness of proposed observer-based fuzzy controller design method.

II. CONTROL PROBLEM FORMULATIONS

The discrete-time nonlinear stochastic time-delay systems considered in this paper could be approximated by the following T-S fuzzy model in the IF-THEN form.

Plant part

Rule i: IF $z_i(k)$ is M_{ii} and $z_i(k)$ is M_{ii} and ... and $z_n(k)$ is M_{in} THEN

$$x(k+1) = A_i x(k) + B_i u(k) + E_i w(k) + A_{di} x(k-\tau) + \beta(k)$$

$$y_c(k) = C_{ai} x(k) + C_{di} x(k-\tau) + D_{ai} w(k)$$

$$y_m(k) = C_{mi} x(k) + C_{mi} x(k-\tau) + D_{mi} w(k)$$

where M_{ij} is the fuzzy set, z_1, z_2, ..., z_n are the premise variables and r is the number of fuzzy rules. And $x(k) \in \mathbb{R}^n$ is the state vector, $x(k-\tau) \in \mathbb{R}^n$ is the time delay vector which satisfies $\tau > 0$, $\phi(k)$ is the initial state of the system for $-\tau \leq k \leq 0$, $u(k) \in \mathbb{R}^n$ is the control input vector, $w(k) \in \mathbb{R}^n$ is the disturbance vector, $y_c(k) \in \mathbb{R}^n$ is the controlled output vector, $y_m(k) \in \mathbb{R}^n$ is the measured output vector, τ denotes the integer representing the time delay of the fuzzy model and $\beta(k)$ is a scalar discrete type Brownian motion.

Besides, $A_i \in \mathbb{R}^{n \times n}$, $B_i \in \mathbb{R}^{n \times m}$, $E_i \in \mathbb{R}^{n \times n}$, $A_{di} \in \mathbb{R}^{n \times n}$, $A_{ai} \in \mathbb{R}^{n \times n}$, $A_{mi} \in \mathbb{R}^{n \times n}$, $C_{mi} \in \mathbb{R}^{n \times n}$, $C_{ai} \in \mathbb{R}^{n \times n}$, $D_{mi} \in \mathbb{R}^{n \times m}$, $D_{ai} \in \mathbb{R}^{n \times m}$, C_{ai} are known constant matrices. Here, it is assumed that $\beta(k)$ satisfies the properties: $E\{\beta(k)\} = 0$, $E\{x(k)\beta(k)\} = 0$ and $E\{\beta(k)\beta(k)\} = 1$. Note that $E\{\cdot\}$ stands the mathematical expectation operator.

The final output of the fuzzy system can be inferred as follows.

$$x(k+1) = \sum_{i=1}^{r} \omega_i(z(k)) x(k)$$

$$y_c(k) = \sum_{i=1}^{r} \omega_i(z(k)) (C_{ai} x(k) + C_{di} x(k-\tau) + D_{ai} w(k))$$

$$y_m(k) = \sum_{i=1}^{r} \omega_i(z(k)) (C_{mi} x(k) + C_{mi} x(k-\tau) + D_{mi} w(k))$$

where

$$z(k) = [z_1(k) \ z_2(k) \ ... \ z_n(k)]^T,$$

$$\omega_i(z(k)) = \prod_{j=1}^{n} \mu_{si}(z_j(k)), \ h_i(z(k)) = \frac{\omega_i(z(k))}{\sum_{i=1}^{r} \omega_i(z(k))}.$$

$$\omega_i(z(k)) \geq 0, \ h_i(z(k)) \geq 0 \ and \ \sum_{i=1}^{r} h_i(z(k)) = 1.$$
And, \(\mu_{M_i}(z_j(k)) \) is the grade of membership function corresponding to the fuzzy set \(M_i \).

In practice, not every state of the real systems is available to measure. Under the condition of immeasurable states, it is essential to design an observer for the systems. In this paper, the following fuzzy observer is proposed to deal with the state estimation for the nonlinear discrete-time stochastic time-delay systems (1).

Observer part

Rule i: IF \(z_1(k) \) is \(M_{i1} \) and \(z_2(k) \) is \(M_{i2} \) and … and \(z_n(k) \) is \(M_{in} \) THEN

\[
\dot{x}(k+1) = A \dot{x}(k) + Bu(k) + A_u \dot{x}(k - \tau)
+ L_i \left(y_m(k) - \dot{y}(k) \right)
\]

(3a)

\[
\dot{y}(k) = C_m \dot{x}(k) + C_m \dot{x}(k - \tau)
\]

(3b)

\[
\dot{x}(k) = \dot{\phi}(k), k \in [-\tau, 0] \quad \text{for } i = 1, 2, \ldots, r \quad \text{(3c)}
\]

where \(\dot{x}(k) \in \mathbb{R}^{n_x} \) is an estimate of \(x(k) \), \(\dot{x}(k - \tau) \in \mathbb{R}^{n_x} \) is an estimate of \(x(k - \tau) \), \(\dot{\phi}(k) \) is the initial state of the fuzzy observer for \(-\tau \leq k \leq 0 \), \(\dot{y}(k) \in \mathbb{R}^{n_y} \) is the output of the fuzzy observer and \(L_i \in \mathbb{R}^{n_y \times n_u} \) is the observer gain. The overall fuzzy observer is thus inferred as follows.

\[
\dot{x}(k+1) = \sum_{i=1}^{r} h_i(z(k)) \]

\[
\times \left(A \dot{x}(k) + B u(k) + A_u \dot{x}(k - \tau) + L_i \left(y_m(k) - \dot{y}(k) \right) \right)
\]

(4a)

\[
\dot{y}(k) = \sum_{i=1}^{r} h_i(z(k)) \left(C_m \dot{x}(k) + C_m \dot{x}(k - \tau) \right)
\]

(4b)

In this paper, the design of observer-based fuzzy controllers is performed through the concept of PDC. Hence, the observer-based fuzzy controller can be proposed as follows.

Controller part

Rule i: IF \(z_1(k) \) is \(M_{i1} \) and \(z_2(k) \) is \(M_{i2} \) and … and \(z_n(k) \) is \(M_{in} \) THEN

\[
u(k) = F_i \dot{x}(k) \quad \text{for } i = 1, \ldots, r
\]

(5)

where \(F_i \in \mathbb{R}^{n_u \times n_x} \) is the observer-based fuzzy controller gain.

The observer-based fuzzy controller (5) can be also represented as follows.

\[
u(k) = \sum_{i=1}^{r} h_i(z(k)) \left(F_i \dot{x}(k) \right)
\]

(6)

Let us define the estimation error as follows.

\[
e(x) = x(k) - \dot{x}(k)
\]

(7a)

\[
e(x+1) = x(k+1) - \dot{x}(k+1)
\]

(7b)

\[
e(x-\tau) = x(k-\tau) - \dot{x}(k-\tau)
\]

(7c)

Substituting (6) into (2a), one can obtain the following closed-loop system from (7a).

\[
x(k+1) = \sum_{i=1}^{r} \sum_{j=1}^{r} h_i(z(k)) h_j(z(k)) \times \left(A_{ij} x(k) - B_i F_j e(k) + E_i w(k) + A_u x(k - \tau) \right.

+ \left(\bar{A}_i x(k) - \bar{B}_i F_j e(k) + \bar{A}_u x(k - \tau) \right) \beta(k) \right)
\]

(8)

where \(A_{ij} = A_i + B_i F_j \) and \(\bar{A}_{ij} = \bar{A}_i + \bar{B}_i F_j \). From (7b) and (7c), one can infer the following estimation error equation.

\[
e(k+1) = \sum_{i=1}^{r} \sum_{j=1}^{r} h_i(z(k)) h_j(z(k)) \times \left(A_{ij} e(k) + E_i w(k) + A_u e(k - \tau) \right.

+ \left(\bar{A}_i e(k) - \bar{B}_i F_j e(k) + \bar{A}_u e(k - \tau) \right) \beta(k) \right)
\]

(9)

where \(A_{ij} = A_i - L_i C_{nj} \), \(E_{ij} = E_i - L_i D_{nj} \) and \(A_{ij} = A_u - L_i C_{nj} \). Then, the augmented closed-loop system can be expressed as the following form.

\[
\bar{x}(k+1) = \sum_{i=1}^{r} \sum_{j=1}^{r} h_i(z(k)) h_j(z(k)) \times \left(G_{ij} \bar{x}(k) + G_u \bar{x}(k - \tau) + G_{ij} \bar{w}(k) \right.

+ \left(\bar{G}_i \bar{x}(k) + \bar{G}_u \bar{x}(k - \tau) \right) \beta(k) \right)
\]

(10a)

\[
y_c(k) = \sum_{i=1}^{r} h_i(z(k)) \times \left(C_{ci} x(k) + \bar{C}_{ci} x(k - \tau) + D_{ci} w(k) \right)
\]

(10b)
where
\[
\begin{align*}
\tau(k+1) &= \begin{bmatrix} x(k+1) \\ e(k+1) \end{bmatrix}, \quad \tau(k) = \begin{bmatrix} x(k) \\ e(k) \end{bmatrix}, \\
\tau(k - \tau) &= \begin{bmatrix} x(k - \tau) \\ e(k - \tau) \end{bmatrix}, \quad \mathbf{G}_{ij} = \begin{bmatrix} A_{ij} & -B_{ij} \end{bmatrix}, \\
\tilde{\mathbf{G}}_{ij} &= \begin{bmatrix} \bar{A}_{ij} & -\bar{B}_{ij} \end{bmatrix}, \\
\tilde{\mathbf{G}}_{ii} &= \begin{bmatrix} \bar{A}_{ii} & 0 \\ 0 & \bar{A}_{ii} \end{bmatrix}, \quad \mathbf{C}_i = [C_i \ 0] \text{ and } \mathbf{C}_d = [C_d \ 0].
\end{align*}
\]

In this paper, the passivity theory is employed to discuss the effect of external disturbance on systems. The passivity performance considered in this paper is introduced by the following definition for the augmented system (10).

Definition 1 (Chang et al., 2010)

If there exist constant matrices \(S_1, S_2 \geq 0 \) and \(S_3 \) for satisfying the following inequality, then the augmented system (10) is called passive with the disturbance \(w(k) \) and the output \(y_c(k) \) for all terminal time \(k \geq 0 \).

\[
E \left\{ 2 \sum_{k=0}^{\infty} y_c^T(k) S_1 w(k) \right\} > E \left\{ \sum_{k=0}^{\infty} y_c^T(k) S_2 y_c(k) + \sum_{k=0}^{\infty} w^T(k) S_3 w(k) \right\} \quad (11)
\]

The purpose of this paper is to find the observer-based fuzzy controller (6) such that the closed-loop system (10) is asymptotically mean square stable and satisfies the passivity constraint (11). Applying the above definitions and lemma, the stability analysis and fuzzy controller design of closed-loop system (10) is discussed in the following section.

III. OBSERVER-BASED FUZZY CONTROLLER DESIGN FOR DISCRETE-TIME STOCHASTIC TIME-DELAY T-S FUZZY MODELS

Considering the augmented system (10), the stability conditions are derived in this section. For finding the controller gains and observer gains, an algorithm is developed to solve the proposed non-LMI stability conditions. The stability conditions for the observer-based fuzzy controller are first derived in the following theorem.

Theorem 1

Given performance parameters \(S_1, S_2 \geq 0, S_3 \) and time delay constant \(r > 0 \). The augmented system (10) is passive and asymptotically mean square stable if there exist positive definite matrices \(P, Q \) and \(R \); any matrices \(M, N \) and \(U \); state feedback gains \(F_i \) and observer gains \(L_i \), to satisfy the following conditions.

\[
\tilde{\mathbf{Q}}_{ij} < 0 \quad \text{for } i, j \leq r \quad (13)
\]

where

\[
\tilde{\mathbf{Q}}_{ij} = \begin{bmatrix} \Omega_{11} & \Omega_{12} & \Omega_{13} & -N + U^T \\
* & \Omega_{22} & \Omega_{23} & -M + U^T \\
* & * & \Omega_{33} & 0 \\
* & * & * & -U + U^T \end{bmatrix} \quad (14a)
\]
\[\begin{align*}
\Omega_1 &= G_j^T P G_j + G_j^T P G_j + (G_j - I)^T \tau R (G_j - I) + G_j^T \tau R G_j \\
&\quad + Q - \tau^T R + N + N^T + \mathbf{C}_i^T \mathbf{C}_i \\
\Omega_2 &= G_j^T P G_j + G_j^T P G_j + (G_j - I)^T \tau R G_j + G_j^T \tau R G_j \\
&\quad + \tau^T R - N + M^T + \mathbf{C}_i^T \mathbf{C}_i \\
\Omega_3 &= G_j^T P G_j + (G_j - I)^T \tau R G_j + \mathbf{C}_i^T \mathbf{C}_i \\
\Omega_4 &= G_j^T P G_j + G_j^T \tau R G_j + \mathbf{C}_i^T \mathbf{C}_i \\
\Omega_5 &= G_j^T P G_j + (G_j - I)^T \tau R G_j - \mathbf{C}_i^T \mathbf{C}_i \\
&\quad + S_3 - D_j^T S_1 - S_j D_i
\end{align*} \]

In symmetric block matrices, the symbol * is used as an ellipsis for terms induced by symmetry.

Proof:

Let us choose a Lyapunov function as

\[V(\mathbf{x}(k)) = V_1(\mathbf{x}(k)) + V_2(\mathbf{x}(k)) + V_3(\mathbf{x}(k))), \]

where

\[V_1(\mathbf{x}(k)) = \mathbf{x}(k)^T P \mathbf{x}(k) \]

\[V_2(\mathbf{x}(k)) = \sum_{s=1}^{k-1} \mathbf{x}(s)^T Q \mathbf{x}(s) \]

\[V_3(\mathbf{x}(k)) = \sum_{i=1}^{k-1} \sum_{s=1}^{k-1} \mathbf{x}(s)^T R \mathbf{x}(s) \]

\[\mathbf{\mathbf{\overline{\mathbf{x}}}}(k) = \mathbf{x}(k+1) - \mathbf{x}(k) \]

Taking the difference of \(V_1(\mathbf{x}(k)) \), \(V_2(\mathbf{x}(k)) \) and \(V_3(\mathbf{x}(k)) \) along to trajectories of (10) and then taking the mathematical expectation, one has

\[E\{ \Delta V(\mathbf{x}(k)) \} = E\{ \mathbf{x}(k+1)^T P \mathbf{x}(k+1) - \mathbf{x}(k)^T P \mathbf{x}(k) \} \]

Substituting the (10) into the first term of the right-hand side of (22), i.e., \(E\{ \mathbf{x}(k)^T R \mathbf{x}(k) \} \), one has

\[E\{ \mathbf{x}(k)^T R \mathbf{x}(k) \} \]

Based on the Lemma 1 and (19), the following inequality can be obtained from the second term of the right-hand side of (22), i.e., \(-\sum_{s=1}^{k-1} \mathbf{x}(s)^T R \mathbf{x}(s) \).

\[\sum_{s=1}^{k-1} \mathbf{x}(s)^T R \mathbf{x}(s) \leq -\mathbf{\mathbf{\overline{\mathbf{x}}}}(k)^T R \mathbf{\mathbf{\overline{\mathbf{x}}}}(k) \]

According to (23) and (24), one has
In order to decrease the conservatism of the proposed stability criterion, the following equation is introduced with the concept of free-weighting matrix technique (Souza et al., 2009). For appropriate dimension matrices, the following equation always holds.

$$2 \left(\bar{x}(k)^T N + (k - \tau)^T M + \sum_{i=1}^{k} \phi_i(s) \right)^T$$

$$\times \left((G_{ij} - I) \bar{x}(k) + G_{ii} \bar{x}(k - \tau) + G_{Eij}w(k) \right)$$

$$\leq \sum_{i=1}^{k} \sum_{j=1}^{k} h_i(z(k)) h_j(z(k)) \left(\phi_i(s) \right)^T$$

$$- \tau^{-1} \left((k) - (k - \tau) \right)^T R \left((k) - (k - \tau) \right)$$

(25)

Thus, combining (20), (21), (25) and (26), one has

$$E \left\{ \Delta V_i \left(\bar{x}(k) \right) \right\}$$

$$\leq \tau E \left\{ \sum_{i=1}^{k} \sum_{j=1}^{k} h_i(z(k)) h_j(z(k)) \left(\phi_i(s) \right)^T \right\}$$

for $i, j \leq r$

(27)

where

$$\phi_i(s) = \left[\bar{x}(k)^T \bar{x}(k - \tau) \right] \left(\sum_{i=1}^{k} \phi_i(s) \right)^T$$

and

$$\Pi_g = \begin{bmatrix} \Pi_{11} & \Pi_{12} & \Pi_{13} & -N + U^T \\ \Pi_{21} & \Pi_{22} & \Pi_{23} & -M - U^T \\ \Pi_{31} & \Pi_{32} & \Pi_{33} & 0 \\ \end{bmatrix}$$

$$\Pi_g = \begin{bmatrix} \Pi_{11} & \Pi_{12} & \Pi_{13} & -N + U^T \\ \Pi_{21} & \Pi_{22} & \Pi_{23} & -M - U^T \\ \Pi_{31} & \Pi_{32} & \Pi_{33} & 0 \\ \end{bmatrix}$$

(28)

where

$$\Pi_{ii} = G_{ij}^T P G_{ij} + G_{ij}^T P G_{ij} + (G_{ij} - I)^T \tau R (G_{ij} - I) + G_{ij}^T \tau R G_{ij}$$

$$+ Q - P - \tau^T R + N + N^T$$

(29a)

$$\Pi_{ii} = G_{ij}^T P G_{ij} + G_{ij}^T P G_{ij} + (G_{ij} - I)^T \tau R G_{ij} + G_{ij}^T \tau R G_{ij}$$

$$+ \tau^T R - N + M^T$$

(29b)

$$\Pi_{ii} = G_{ij}^T P G_{ij} + (G_{ij} - I)^T \tau R G_{ij}$$

(29c)

$$\Pi_{ii} = G_{ij}^T P G_{ij} + G_{ij}^T P G_{ij} + G_{ij}^T \tau R G_{ij} + G_{ij}^T \tau R G_{ij}$$

$$- Q - \tau^T R - M - M^T$$

(29d)

$$\Pi_{ii} = G_{ij}^T P G_{ij} + G_{ij}^T \tau R G_{ij}$$

(29e)

$$\Pi_{ii} = G_{ij}^T P G_{ij} + G_{ij}^T \tau R G_{ij}$$

(29f)

Let us introduce the following performance function.

$$J(\bar{x}(k)) = E \left\{ \sum_{k=0}^{k} \left(y_{i}^T (k) S_i y_{i} (k) \right)^2 + w^T (k) S_i w(k) - 2 y_{i}^T (k) S_i w(k) \right\}$$

(30)

For all $w(k) \neq 0$ with zero initial condition, one has

$$J(\bar{x}(k)) = E \left\{ \sum_{k=0}^{k} \left(y_{i}^T (k) S_i y_{i} (k) + w^T (k) S_i w(k) \right) \right\}$$

$$- 2 y_{i}^T (k) S_i w(k) + \Delta V \left(\bar{x}(k) \right) - V \left(\bar{x}(k) \right) \right\}$$

$$\leq \sum_{k=0}^{k} \left(y_{i}^T (k) S_i y_{i} (k) + w^T (k) S_i w(k) \right)$$

$$- 2 y_{i}^T (k) S_i w(k) + \Delta V \left(\bar{x}(k) \right)$$

(31)

Thus, the following inequality can be obtained by substituting (10b) into (31).

$$J(\bar{x}(k)) \leq E \sum_{k=0}^{k} \left(\sum_{i=1}^{k} \sum_{j=1}^{k} h_i(z(k)) h_j(z(k)) \phi_i(s) \phi_j(s) \right)^T \bar{\Omega}_g \phi_i(s) \phi_j(s)$$

(32)

where

$$\bar{\Omega}_g = \bar{\Pi} + \Gamma_i$$

(33)
Obviously, if the conditions (13) holds then one has $J(\bar{x}(k)) < 0$. Thus, the following relation can be obtained from (30) according to $J(\bar{x}(k)) < 0$.

$$E\left\{\sum_{k=0}^{\infty} \left[y_c^T(k)S_2y_c(k) + w_1^T(k)S_1w(k) - 2y_c^T(k)S_1w(k)\right]\right\} < 0$$

or

$$E\left\{2\sum_{k=0}^{\infty} y_c^T(k)S_1w(k)\right\} > E\left\{\sum_{k=0}^{\infty} \left[y_c^T(k)S_2y_c(k) + w_1^T(k)S_1w(k)\right]\right\}$$

(35a)

(35b)

Since (35b) is equivalent to (11) of Definition 1, the augmented system (10) is passive for all nonzero external disturbance, i.e., $w(k) \neq 0$. Then, we need to show that the system is asymptotically mean square stable. By omitting the external disturbance, i.e., $w(k) = 0$, if the conditions (13) hold, the following inequality can be obtained from (33).

$$\Pi_{ij} < -\left(\overline{C}_{ij}\overline{\tau}(k) + \overline{C}_{cdi}\overline{\tau}(k - \tau)\right)^T S_2 \left(\overline{C}_{ij}\overline{\tau}(k) + \overline{C}_{cdi}\overline{\tau}(k - \tau)\right)$$

(36)

It can be found that if $S_i \geq 0$ holds then $\Pi_{ij} < 0$. From (27), the inequality $E\{\Delta V(x(k))\} < 0$ can be obtained due to $\Pi_{ij} < 0$. In this case, the augmented system (10) is asymptotically mean square stable from Definition 2. The proof of this theorem is completed.

Remark 1

In Theorem 1, the Lemma 1 and free-weighting matrix technique are employed to derive stability conditions (13). In Zhu and Yang (2008), the Lemma 1 is applied to derived less conservative stability conditions of nonlinear system with time delay. The reasons for discrete Jensen inequality reducing the conservatism have been illustrated and proven in Zhu and Yang (2008). Besides, the free-weighting matrix technique (Souza et al., 2009) is a famous technique that can also derive the conservative stability conditions of delay systems by adding extra variables without any limitation.

The stability conditions stated in (13) developed in Theorem 1 are of the form of Bilinear Matrix Inequality (BMI) that cannot be directly calculated by LMI technique. For this reason, the modified stability conditions are derived from the BMI conditions (13) in the following theorem.

Theorem 2

Given performance parameters $S_1, S_2 \geq 0, S_i$ and time delay constant $\tau > 0$. The augmented system (10) is passive and asymptotically mean square stable if there exists positive definite matrices P, Q and R; any matrices M, N and U; state feedback gains F_i and observer gains L_i to satisfy the following conditions.

$$\begin{bmatrix}
\Theta_{11} & \Theta_{12} & \Theta_{13} & \Theta_{14} & \Theta_{15} \\
* & -P^{-1} & 0 & 0 & 0 \\
* & * & -P^{-1} & 0 & 0 \\
* & * & * & -R^{-1} & 0 \\
* & * & * & * & -R^{-1}
\end{bmatrix} < 0 \text{ for } i, j \leq \tau$$

(37)

where

$$\begin{bmatrix}
\Psi_{11} + \overline{C}_{ij}\overline{S}_{ij} & \tau^T R - N + M^T & \overline{C}_{cdi}\overline{S}_{cdi} \\
* & -Q - \tau^T R - M - M^T & \overline{C}_{cdi}\overline{S}_{cdi} \\
* & * & -R^{-1} \\
\overline{C}_{cdi}\overline{S}_{cdi} & -\overline{C}_{ij}\overline{S}_{ij} & -N + U^T \\
\overline{C}_{cdi}\overline{S}_{cdi} & -\overline{C}_{ij}\overline{S}_{ij} & -M - U^T \\
D_1^T S_{1\tau} + S_1 - D_1^T S_{1\tau} & 0 & \cdot & \cdot & \cdot
\end{bmatrix}$$

$$\begin{bmatrix}
\Theta_{12} = \begin{bmatrix}
G_{ij} & G_{di} & G_{eij} & 0
\end{bmatrix},
\Theta_{13} = \begin{bmatrix}
\overline{G}_{ij} & \overline{G}_{di} & 0 & 0
\end{bmatrix},
\Theta_{14} = \sqrt{\tau} \begin{bmatrix}
G_{ij} & \overline{G}_{di} & G_{eij} & 0
\end{bmatrix},
\Theta_{15} = \sqrt{\tau} \Theta_{13}
\end{bmatrix}$$

and

$$\Psi_{11} = Q - \tau^T R + N + N^T.$$
From the definitions of the matrices below (37), the inequality (38) can also be rewritten in the following form.

\[
\begin{bmatrix}
\Theta_{i1} + \Theta_{i2} \Theta_{i2}^T + \Theta_{i3} \Theta_{i3}^T + \Theta_{i4} \Theta_{i4}^T + \Theta_{i5} \Theta_{i5}^T
* - P^{-1} 0 0 0
* * - P^{-1} 0 0
* * * - R^{-1} 0
* * * * - R^{-1}
\end{bmatrix} < 0
\]

Based on the cone complementarity technique (Ghaoui et al., 1997), the following nonlinear minimization problem can be proposed by replacing \(P^{-1} \) and \(R^{-1} \) as \(X \) and \(T \) in (37).

Minimize trace \(PX \) and trace \(RT \).

Subject to (41), \(\begin{bmatrix} P & I \\ I & X \end{bmatrix} \geq 0 \) and \(\begin{bmatrix} R & I \\ I & T \end{bmatrix} \geq 0 \) (42)

Although the above minimization problem gives sub-optimal solutions for (41), it is much easier to find feasible solutions than the original non-convex conditions (13). Based on the nonlinear minimization problem stated in (42), the feasible solutions of stability condition (37) can be solved by using the following algorithm.

Algorithm 1

Step 1. Choose performance matrices \(S_1 \), \(S_2 \geq 0 \) and \(S_3 \).

Find the feasible solutions \(P^{-1} \) and \(R^{-1} \) for satisfying the (41). Set \(t = 1 \) and the obtained variables to be initial variables set \(\{ P^{-1}, R^{-1}, X, T \} \).

Step 2. Solve the parameters \(\{ P', R', X', T' \} \) from the following LMI problem with obtained variables \(\{ P^{-1}, R^{-1}, X^{-1}, T^{-1} \} \).

Minimize trace \(\begin{bmatrix} P' & X' \\ X & T' \end{bmatrix}^{-1} \) and trace \(\begin{bmatrix} R' & I \\ I & T' \end{bmatrix}^{-1} \).

Subject to (41), \(\begin{bmatrix} P' & I \\ I & X \end{bmatrix} \geq 0 \) and \(\begin{bmatrix} R' & I \\ I & T \end{bmatrix} \geq 0 \).

Step 3. Substitute the obtained solutions from Step 2 into (37).

If the inequality (37) is satisfied, then stop and quit the algorithm. Otherwise, Set \(t = t + 1 \) and go to Step 2.

In the following section, a numerical example for the control of nonlinear pendulum system with time delay is provided to illustrate the application of proposed observer-based fuzzy controller design method.
IV. NUMERICAL EXAMPLE FOR THE CONTROL OF NONLINEAR PENDULUM SYSTEMS

According to the design method developed in this paper, the observer-based fuzzy controller for nonlinear pendulum system with time delay is designed in this section. Referring to Feng (2006), the dynamic equation of continuous-time nonlinear time-delay pendulum system is described as follows.

\[x_i(t) = Ax_i(t) + (1 - \alpha) x_i(t - \tau) \]

\[\dot{x}_2(t) = \frac{g \sin x_1(t) + \left(2b/\ell m\right)(\alpha x_2(t) + (1 - \alpha) x_2(t - \tau))}{\left(4/3\right)p - \alpha m \cos^2 x_1(t)} \]

\[+ \frac{\left(\alpha m/2\right)(\alpha x_2(t) + (1 - \alpha) x_2(t - \tau))^2 \sin(2x_1(t))}{\left(4/3\right)p - \alpha m \cos^2 x_1(t)} \]

\[+ w(t) \]

\[y(t) = \sin x_1(t) + \alpha x_2(t) + (1 - \alpha) x_2(t - \tau) + w(t) \]

(43)

where \(x_i(t) \) denotes the angle of the pendulum from the vertical, \(x_2(t) \) is the angular velocity and \(w(t) \) is a zero-mean white noise with variance 1. Besides, \(g \) is the gravity constant, \(m \) is the mass of the pendulum, \(M \) is the mass of the cart, \(a = 1/(m + M) \), \(2l \) is the length of the pendulum and \(b \) is the damping coefficient of the pendulum around the pivot. In this example, the pendulum parameters are chosen as \(g = 9.8 \text{ m/s}^2, m = 2 \text{ kg}, M = 8 \text{ kg}, l = 0.5 \text{ m}, b = 0.7 \text{ Nm/s} \), and the retarded coefficient is given as \(\alpha = 0.9 \). In order to consider the stochastic behaviors, the multiplicative noise term is added in the system. By linearizing the plant around the operation points, i.e., \(x_{\text{op}} = (0, 0) \), \(x_{\text{op}2} = (\pm \pi/3, 0) \) and \(x_{\text{op}3} = (\pm \pi/2, 0) \), and discretizing it with the sampling period \(T = 0.1 \text{ s} \), then the discrete-time T-S fuzzy model with multiplicative noise can be obtained as follows.

\[x(k+1) = A_i x(k) + B_i u(k) + E_i w(k) + A_{di} x(k-\tau) + \left(\overline{A}_i x(k) + \overline{B}_i u(k) + \overline{A}_{di} x(k-\tau)\right) \beta(k) \]

(44a)

\[y_m(k) = C_{mi} x(k) + C_{mai} x(k-\tau) + D_{mi} w(k) \]

(44b)

\[y_i(k) = C_{ci} x(k) + C_{cai} x(k-\tau) + D_{ci} w(k) \]

(44c)

for \(i = 1, 2, 3 \)

where

\[\text{Rule } i: \text{IF } x_i(k) \text{ is about } M_{ii} \text{ THEN} \]

\[x(k+1) = A_i x(k) + B_i u(k) + E_i w(k) + A_{di} x(k-\tau) + \left(\overline{A}_i x(k) + \overline{B}_i u(k) + \overline{A}_{di} x(k-\tau)\right) \beta(k) \]

\[y_m(k) = C_{mi} x(k) + C_{mai} x(k-\tau) + D_{mi} w(k) \]

\[y_i(k) = C_{ci} x(k) + C_{cai} x(k-\tau) + D_{ci} w(k) \]

The membership functions of \(x_i(k) \) are shown in Fig. 1.

Before starting the calculation process, let us set the parameters as \(S_1 \equiv 1.5, S_2 \equiv 0.1 \) and \(S_3 \equiv 0.8 \) and \(\tau = 2 \) for designing observer-based fuzzy controller. Using the LMI Toolbox of MATLAB, the following state feedback gains and observer gains can be obtained via Theorem 2 and Algorithm 1.

\[F_1 = \begin{bmatrix} -2.7498 & -0.8487 \end{bmatrix}, F_2 = \begin{bmatrix} -2.9325 & -0.8534 \end{bmatrix}, \]

\[F_3 = \begin{bmatrix} -2.9253 & -0.8221 \end{bmatrix}, L_1 = \begin{bmatrix} 0.2305 & 101.1767 \end{bmatrix} \times 10^{-3}, \]

\[L_2 = \begin{bmatrix} 0.2762 & 101.1041 \end{bmatrix} \times 10^{-3}, L_3 = \begin{bmatrix} 0.2995 & 101.0155 \end{bmatrix} \times 10^{-3}, \]
Based on the above feedback gains, the observer-based fuzzy controller can be obtained by PDC concept such as

$$u(k) = \sum_{i=1}^{r} h_i(z(k)) \left(F \hat{x}(k) \right)$$

(45)

With the designed fuzzy controller (45), the state responses of the augmented system are shown in Figs. 2 and 3 with the initial conditions $x(0) = [\pi/4 \; 0]^T$ and $\hat{x}(0) = [\pi/6 \; 0]^T$. From the simulated responses, the following ratio can be introduced to check the passivity constraint (11).

$$E \left\{ \sum_{k=0}^{\infty} 0.1 y^T_x(k) y_x(k) + 0.8 w^T(k) w(k) \right\} = 0.3156$$

(46)

It is easy to find that the value of (46) is smaller than one; hence, the passivity constraint (11) with $S_1 \tilde{=} 1.5$, $S_2 \tilde{=} 0.1$ and $S_3 \tilde{=} 0.8$ can be satisfied. From Figs. 2 and 3 and (46), one can find that the system (43) driven by fuzzy controller (45) is passive and asymptotically mean square stable.

V. CONCLUSIONS

In this paper, the observer-based fuzzy controller design method was considered for discrete-time nonlinear stochastic systems with time delay. And, the stochastic T-S fuzzy model was proposed to represent the nonlinear stochastic systems via T-S fuzzy model approach. For discussing the stability and stabilization problems, the sufficient conditions have been derived via the Lyapunov stability criterion and the passivity theorem. Besides, the discrete Jensen inequality and the free-weighting matrix technique were employed to reduce the conservatism of the proposed stability criterion. In order to
calculate the non-LMI problems, an algorithm was proposed in this paper by using cone complementarity technique. Via the proposed design methods, the observer-based fuzzy controller can be designed for stabilizing the discrete-time stochastic T-S fuzzy model with time delay.

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to anonymous reviewers who gave us some constructive comments, criticisms and suggestions.

REFERENCES