DESIGN OF AN INTELLIGENT DAMPING CONTROLLER OF STATCOM WITH HVDC FOR LARGE OFFSHORE WIND FARM

Kai-Hung Lu1, 2, Hsin-Chuan Chen1, 2, Yu Su1, 2, and Qiangqiang Xu1, 2

Key words: functional link-based recurrent fuzzy neural network (FLRFNN), genetic algorithm hybrid time varying particle swarm optimization (GAHTVPSO), offshore wind farm (OWF), Intelligent Damping Controller (IDC).

ABSTRACT

This paper proposes the design of an Intelligent Damping Controller (IDC) for a Static Synchronous Compensator (STATCOM), linking to a high voltage direct current (HVDC) transmission line, where a permanent magnet synchronous generator (PMSG)-based offshore wind farm (OWF) is connected. This IDC consists of a critic network with the proposed Functional Link based Recurrent Fuzzy Neural Network (FLRFNN) and Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm. A single-machine infinite-bus and a multi-machine hybrid power system were used for test the system stability. GAHTVPSO approach is developed to adjust the learning rates to improve the learning capability. Analysis of the performance shows that it can achieve better damping characteristics.

I. INTRODUCTION

Wind generation systems are attracting considerable attention as clean and safe sources of renewable power (Cardenas et al., 2005). In recent years some small-scale offshore wind farms (OWFs) are evaluated, whiles a number of large-scale OWFs have been constructed and are now in commercial operation. There are also a lot of interest in PMSG, owing to their compact structure, high air-gap flux density, high power density, high torque-to-inertia ratio, and high torque capability (Lin et al., 2011). When OWFs through HVDC systems deliver a large amount of electric power to power grids, the inherent power fluctuations that occur can have adverse impacts on the power quality of the systems to which they are connected.

In recent years, the dynamic control strategies for the HVDC with STATCOM are often discussed. The STATCOM proposed by Gyugyi and Hingorani, is the most versatile and powerful FACTS device (Zhou et al., 2011a; Zhou et al., 2011b). It can increase the system security by raising the transient stability limit, limiting short circuit currents and overloads, blackouts and damping oscillations of power systems. Several studies have proposed control methods for STATCOM to improve the damping of the low frequency power oscillations, such as the use of nonlinear voltage control loops, state feedback control techniques, Phase and Amplitude Control or Adaptive critic designs (Lingling and Zhixin, 2016; Chen et al., 2010). However, the complexity of the wind farm power systems, to which the STATCOM is connected, means that the control schemes become less efficient with regard to mitigating power oscillations thus reduce the control performance. Some studies have proposed external controllers using intelligent control schemes, such as fuzzy logic controllers, neuro-fuzzy external controllers, hybrid Fuzzy/LQR controllers and a Gray-Based Genetic algorithm method (Mohagheghi et al., 2007; Hong and Luo 2009; Wang and Truong, 2013a).

This paper proposed an Intelligent Damping Controller (IDC) for a STATCOM to damp power system oscillations. The proposed IDC consists of the adaptive critic network, the functional link-based recurrent fuzzy neural network (FLRFNN) and the Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm.

With the dynamics being continually identified by a model, the recurrent fuzzy neural networks (RFNN) is suitable for multivariable applications especially for a system with unclear and complex dynamics (Lin et al., 2010). The functional-link neural network (FLNN) is adopted for FLRFNN and the Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm.

With the dynamics being continually identified by a model, the recurrent fuzzy neural networks (RFNN) is suitable for multivariable applications especially for a system with unclear and complex dynamics (Lin et al., 2010). The functional-link neural network (FLNN) is adopted for FLRFNN and the Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm.

With the dynamics being continually identified by a model, the recurrent fuzzy neural networks (RFNN) is suitable for multivariable applications especially for a system with unclear and complex dynamics (Lin et al., 2010). The functional-link neural network (FLNN) is adopted for FLRFNN and the Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm.

With the dynamics being continually identified by a model, the recurrent fuzzy neural networks (RFNN) is suitable for multivariable applications especially for a system with unclear and complex dynamics (Lin et al., 2010). The functional-link neural network (FLNN) is adopted for FLRFNN and the Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm.

With the dynamics being continually identified by a model, the recurrent fuzzy neural networks (RFNN) is suitable for multivariable applications especially for a system with unclear and complex dynamics (Lin et al., 2010). The functional-link neural network (FLNN) is adopted for FLRFNN and the Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm.

With the dynamics being continually identified by a model, the recurrent fuzzy neural networks (RFNN) is suitable for multivariable applications especially for a system with unclear and complex dynamics (Lin et al., 2010). The functional-link neural network (FLNN) is adopted for FLRFNN and the Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm.

With the dynamics being continually identified by a model, the recurrent fuzzy neural networks (RFNN) is suitable for multivariable applications especially for a system with unclear and complex dynamics (Lin et al., 2010). The functional-link neural network (FLNN) is adopted for FLRFNN and the Genetic Algorithm Hybrid Time Varying Particle Swarm Optimization (GAHTVPSO) algorithm.
controller, so the optimal damping control signal can be provided to the STATCOM.

However, the initial values of FLRFNN and the adaptive critic network learning rates are normally difficult to obtain. This paper also proposed the crossover operation to the particles’ chromosome in the GAHTVPSO to find the optimal values of these learning rates. Particle swarm optimization (PSO) was first introduced by Kennedy and Eberhart in 1995 (Eberhar and Shi, 2001; Chaturvedi et al., 2008). Since it is population based and self-adaptive, it has gained increasing popularity as an efficient alternative to genetic algorithms (GAs). Moreover, PSO has been shown to be effective in optimizing difficult multi-dimensional continuous problems in a variety of research fields. In addition, compared with GA, PSO has the ability to remember knowledge of good solutions, and which can also be retained by all the particles involved. The PSO-Time Varying Acceleration Coefficients (PSO-TV AC) parameter tuning approach has recently been shown to be effective in improving the performance of PSO (Varshney et al., 2011).

II. ANALYSIS OF SYSTEM MODELS

Fig. 1 shows the configuration of the system studied in this paper. The integrated OWF is connected to a power grid through a 50 km HVDC transmission line. The OWF, represented by a large equivalent aggregated PMSG, is driven by an equivalent aggregated wind turbine through the gearbox in (Wang and Truong, 2013c). The aggregated OWF containing 100 MW PMSG-based wind turbine generators is connected to an offshore bus through a step-up transformer \(T_{w} \). The voltage of the offshore PCC bus is stepped up to 24 kV. The onshore PCC bus is connected to the power grid through a transmission line with \(R_t + jX_t \). The proposed STATCOM is 70 MVar, with voltage source converter (VSC) connected in shunt via a shunt transformer \(T_{ps} \), primarily to provide the real power demand at the common DC link.

1. Wind Turbine Model

The wind turbine model based on PMSG is the mechanical power turning the generator rotor. The PMSG wind farm consists of a PWM voltage source converter and an inverter for wind power generation speed control, as illustrated in Fig. 1, the “VSC” and “VSI”. The VSC and VSI voltage-oriented vector control design and control block diagram of the PMSG have been presented in (Wang and Truong, 2013b). For a variable speed wind turbine, the output mechanical power available from a wind turbine can be expressed as

\[
P_m = 0.5 \rho A C_p (\lambda, \beta) V_o^3
\]

where \(\rho \) and \(A \) are the air density and impact area swept by blades, respectively. \(V_o \) is the wind velocity (m/sec), and \(C_p \) is called the power coefficient, and is given as a nonlinear function of the tip speed ratio \(\lambda = \omega_1/V_o \). \(\omega_1 \) is the turbine speed of blade radius. \(C_p \) is a function of the \(\lambda \) and the blade pitch angle \(\beta \), and is generally defined with (Zhou et al., 2011) as Eq. (2) and (3).

\[
C_p = C_{p1} \left(\frac{C_{p2} - C_{p3} \beta - C_{p4} \beta^2 - C_{p5}}{\lambda - C_{p6} \beta} \right) e^{C_{p7} \lambda} e^{C_{p8} \beta}
\]

\[
\lambda_i = \frac{1}{\lambda - C_{pi} \beta} \frac{C_{pi}}{\beta^3 + 1}
\]

where \(C_{p1} \) to \(C_{p6} \) are the wind turbine constant coefficients of \(C_p \).

The wind generator chosen for this study is a three-phase PMSG, where the mechanical torque \(T_m \) and electrical torque \(T_e \) can be calculated as (Lin et al., 2011)

\[
T_m = \frac{P_m}{\omega_1}
\]

\[
T_e = \frac{P}{n_p \omega} - \frac{2}{n_p} \frac{P}{\omega}
\]

In general, the mechanical dynamic equation of a PMSG is given by

\[
J \frac{d \omega_1}{dt} = T_m - B \omega_1 - T_e
\]

where \(\omega_1 \) and \(n_p \) are the electrical angular frequency and the number of poles, respectively. \(J \) is the moment of inertia of the wind turbine generator, and \(B \) is the friction coefficient of the generator.

The machine model of a PMSG in the rotor rotating reference frame can be described by (Lin et al., 2011)
\[v_q = R_i q + p \lambda_q + \omega_s \lambda_d \]
\[v_d = R_i d + p \lambda_d + \omega_s \lambda_q \]
\[\lambda_q = L_q i_q \]
\[\lambda_d = L_d i_d + L_{md} I_{md} \]
\[\omega_s = n_p \omega_p \]

where \(v_q \) and \(v_d \) are the \(d-q \) axis stator voltages; \(i_d \) and \(i_q \) are the \(d \) and \(q \) components of stator currents; \(L_d \) and \(L_q \) are the \(d-q \) axis stator inductances; \(\lambda_d \) and \(\lambda_q \) are the \(d-q \) axis stator flux linkages; \(R \) is the stator resistance; \(\omega_s \) is the inverter frequency; \(I_{md} \) is the equivalent \(d \) component of magnetizing current; and \(L_{md} \) is the \(d \) component of mutual inductance.

2. HVDC

The HVDC link consists of an offshore, onshore VSC and dc cables. The VSCs of HVDC have the same structure. The wind turbine side VSC (WT-VSC) operated from the wind farms controls the voltage of offshore PCC bus. The power grid side VSC (GW-VSC) connected with onshore PCC bus is used primarily to maintain a constant voltage of the dc link. The reactive power exchanged at the two ac terminals is generated internally by the VSCs. The WT-VSC is responsible for collecting the power generated by the wind farm when the HVDC grid connection is used in the wind power generation system. The WTVSC is more like a stiff voltage source for the wind farm, and works as a slack node in the whole system as it automatically absorbs the power sending from the wind farm regardless of active or reactive power.

The GW-VSC is the key node for the wind power feeding into the grid system; its operational status will directly impact the grid power quality. The GW-VSC plays two roles in the operation of the whole system: one is to provide a robust dc voltage, which will be a strong backup support for the WT-VSC to provide a constant wind farm side bus voltage; another is to adjust the state of wind power feeding into the power grid. The dc transmission line current flows through the voltage source resulting in reactive and active power exchange with the ac system. The outer voltage and inner current loop of WTVS and GW-VSC can be converted in the \(d-q \) common reference frame as presented in (Zhou et al., 2011).

3. STATCOM External Control

The shunt STATCOM is like a synchronous compensator, with no inertia. The STATCOM can supply both the capacitive and the inductive compensation to support the bus voltage by independently controlling its output current. The real current is responsible for controlling the real power, while the reactive current is used to control the reactive power. It is also capable of improving the power system stability. The STATCOM generally is controlled by an external auxiliary control loops to damp the oscillations to improve the reference signal of the line voltage controller. The control structure of the STATCOM is shown in Fig. 2, where the typical external damping controller is which will be used for tests blown up in Fig. 3.

\[V_{S}^* \] and \(V_{dc}^* \) are reference signals of the offshore PCC bus voltage and dc link voltage of STATCOM. \(K_{p1}, K_{p2}, K_{I1}, \) and \(K_{I2} \) are the proportional and integral gains of PI controllers, respectively. \(V_{sref} \) and \(V_{dcref} \) are the initial values for the \(d-q \) axis voltages under synchronous reference frame. The direct and quadrature components of the voltages are then used to generate the modulation index \(m \) and phase shift \(\alpha \), which are then provided to the PWM generator to generate the gating signals for the power electronic switches in VSC.

The typical external damping controller of STATCOM in Fig. 3 is used as a baseline controller in this paper. It consists of the filter and damping controller. Since the wind turbine generator speed deviations are easier to obtain from measurement and analysis, the inputs of the damping loops are the generator speed deviation \(\Delta \omega \) and the terminal voltage deviation \(\Delta V \) related to the external controller. The main function of STATCOM is to regulate the line voltage at the point of connection, which can be used to damp the oscillations to improve the system stability. However, in various operating conditions of the power system, the performance of the linear external controller can be...
is the outer product term. Moreover, the FLNN output is written in the enhanced space as

\[y_{E} = \left\{ x_{1}, x_{2}, \sin(\pi x_{1}), \cos(\pi x_{1}), \sin(\pi x_{2}), \cos(\pi x_{2}) \right\}, \]

where the number of nodes can be adjusted according to the knowledge of various applications.

The FLNN uses a feedforward neural network structure to generate a set of linearly independent functions, and functionally expands the elements of the input variables. The trigonometric function, the sine and cosine function is used in the FLNN, since it can be computed more quickly than the Gaussian. Moreover, it also provides better performance when the outer product term is taken into account in the function expansion (Lin et al., 2010; Wang and Sa-Nguyen Thi, 2013).

The input vector \(\mathbf{X} = [x_{1}, x_{2}]^{T} \) is a functional expansion that uses a trigonometric polynomial basis function, and can be written in the enhanced space as \(\mathbf{y}_{E} = [y_{1}, y_{2}, \ldots, y_{6}] = [1, x_{1}, \sin(\pi x_{1}), \cos(\pi x_{1}), x_{2}, \sin(\pi x_{2}), \cos(\pi x_{2})] \), where \(x_{1}, x_{2} \) is the outer product term. Furthermore, the FLNN output is expressed by a linear sum of the \(y \)th node as

\[
\hat{f}_{y}(k) = \theta \left(\sum_{x} y_{E}(x) \cdot w_{y} \right) = \theta \left(w_{y} \cdot \psi_{E}(\mathbf{X}) \right),
\]

where \(\hat{f}_{y} \) is the outer product term, \(w_{y} \) is the connective weight, and \(\psi_{E} \) is the function expansion output. \(\theta \) is a set of basic functions. The network input \(\mathbf{X} = [\Delta \alpha_{d}, \Delta \alpha_{q}]^{T} \) is used and FLRFNN can employ the neurons to increase dynamic characteristics of the network.

The RFNN can retain dynamic characteristics of the network through trainings of the weights \(\psi_{i} \) and \(\mathbf{X}_{i} \), and has a better dynamic response than that of the general RFNN. \(\mathbf{O}_{i} \) is the output of each layer, with superscripts to represent the layer-number and subscripts to represent the signal number and are given as

\[
\mathbf{O}_{i}^{(j)}(t) = X_{i}^{(j)}(t) \quad i = 1, 2
\]
where \(k \) denotes the iteration number of FLRFNN. \(m_{ij} \) is the Mean, \(\sigma_{ij} \) is the Standard Deviation (STD) of the \(i \)-term input linguistic variable \(O^{(0)} \) in the \(j \)-term. \(R \in \{1, 2, 3 \ldots, j \} \); \(w_{E} = w_{y} = 1 \); \(\chi_{RR} \) is the recurrent weight. The parameters of the FLRFNN to be trained are \(\sigma_{ij}, m_{ij}, w_{E}, \phi_{ij} \) and \(\chi_{RR} \). \(E_O \) is called an output linguistic node, which performs the operation of defuzzification. \(E_O = \Delta V_{damping} \), which is added to the voltage reference \(V_{s*} \) of the PI1 controller (Fig. 4).

2. Adaptive Critic Network

An adaptive critic network can be designed to identify the sensitivity use of FLRFNN \(\frac{\partial J}{\partial \Delta V_{damping}} \) to learn the cost-to-go associated with the power system. This ability is of great importance for real time optimal control operations when there are changes in configuration and operating conditions. The cost-to-go function \(J \) of Bellman’s equation of dynamic programming estimated by the critic network is (Wang and Sa-Nguyen Thi, 2013).

\[
J(t) = \sum_{k=0}^{\infty} \gamma^k U(t+k) = U(t) + \sum_{k=0}^{\infty} \gamma^k U \left[(t+1)+k\right] = U(t) + \gamma J(t+1) \tag{17}
\]

where the utility function \(U(t) \) is an important factor to form the optimal cost-to-go \(\gamma \) represents the discount factor (0-1). The utility function of the critic network includes \(U_{o}(t) \) and \(U_{i}(t) \) is

\[
U(t) = U_{o}(t) + U_{i}(t) \tag{18}
\]

\[
U_{o}(t) = [\Delta \omega_{m}(t) + \Delta \omega_{m}(t-1) + \Delta \omega_{m}(t-2)] \tag{19}
\]

\[
U_{i}(t) = [\Delta V_{s}(t) + \Delta V_{s}(t-1) + \Delta V_{s}(t-2)] \tag{20}
\]

The node output of each layer of the critic network and the superscripts represent the layer-number of the output \(O_{c} \), while the subscripts present the signal number of the related output, and are given as

\[
O_{c}^{(1)}(t) = F_{i}^{(1)}(t), \quad i = 1, \ldots, 8
\]

\[
F_{i} = [\Delta \omega_{m}(t) + \Delta \omega_{m}(t-1), \ldots, \Delta V_{s}(t-2), \Delta V_{damping}, 1] \tag{21}
\]

\[
O_{c}^{(2)}(t) = \frac{1}{1 + \exp^{-H}} \cdot H = \sum_{i=1}^{8} O_{c}^{(1)} \cdot w_{ab} \tag{22}
\]

\[
O_{c}^{(3)}(t) = J_{o}(t) = \sum_{n=1}^{2} O_{c}^{(2)}, \quad n = 1, 2 \tag{23}
\]

\[
O_{c}^{(4)}(t) = \sum O_{c}^{(3)} = J(t) \tag{24}
\]

where \(w_{ab} \) is the connecting weights of the input layer to hidden layer.

Using Eqs. (19) and (20), the STATCOM should improve the performance of both generator speed deviation \(\Delta \omega_{m} \) and PCC voltage deviation \(\Delta V_{s} \). The adaptive critic network in Fig. 6 has a four-layer feed-forward network structure. The training process ensures that the critic network provides optimal control to minimize the \(J(t) \), which enables the FLRFNN controller to provide the optimal damping control signal to the STATCOM in this paper.

3. The Training Process of FLRFNN and Adaptive Critic Network

The gradient descent algorithm with the mean squared error
function as the error function \(E \) can be defined by (Wang and Sa-Nguyen Thi, 2013).

\[
E = \frac{1}{2} (J^*(t) - J(t))^2
\]

\[
= \frac{1}{2} [U(t) + \gamma \cdot J^*(t + 1) - J(t)]^2
\]

where \(J^*(t) \) is the reference value of the cost-to-go, which is zero in the case of dealing with deviation signals.

The BPTT can be used to find the estimates of the gradient (Xu et al., 2013). In order to use an on-line algorithm for the critic network and the proposed FLRFNN, the error term of critic network \(\delta_{c} \) can be analyzed. The feed-forward part of error terms of FLRFNN, \(\delta_{FLRFNN}^{\text{fed}} \) based on the chain rule can be represented as (26) and (27). The recurrent error term, \(\delta_{FLRFNN}^{\text{rec}} \) of FLRFNN can be propagated and unfolded for more than two layers for capturing previous information. \(\delta_{FLRFNN}^{\text{rec}} \) can be represented as Eq. (28)

\[
\delta_{c} = \sum_{i=1}^{n} \frac{\partial E}{\partial w_{c}} = \sum_{i=1}^{n} \frac{\partial E}{\partial J} \cdot \frac{\partial J}{\partial w_{c}}
\]

\[
\delta_{FLRFNN}^{\text{fed}} = \sum_{u} \frac{\partial E}{\partial w_{FLRFNN}^{\text{fed}}} = \sum_{u} \frac{\partial E}{\partial J} \cdot \frac{\partial J}{\partial w_{FLRFNN}^{\text{fed}}}
\]

\[
\delta_{FLRFNN}^{\text{rec}}(t-1) = \sum_{j} \frac{\partial E}{\partial w_{FLRFNN}^{\text{rec}}} = \sum_{j} \frac{\partial E}{\partial J} \cdot \frac{\partial J}{\partial w_{FLRFNN}^{\text{rec}}}
\]

where \(\frac{\partial J}{\partial \Delta V_{\text{damping}}} \) is the sensitivity of FLRFNN by the critic network identified as

\[
\frac{\partial J}{\partial \Delta V_{\text{damping}}} = \frac{\partial J}{\partial \Delta \theta_{c}} \cdot \frac{\Delta \theta_{c}}{\partial \Delta V_{\text{damping}}}
\]

The formula for adjusting the \(w_{ab} \) of the critic network, weights \(W_{FLRFNN}^{\text{fed}} \) and \(W_{FLRFNN}^{\text{rec}} \) of FLRFNN are shown in (29)-(31). More details of the training procedure can be found in an earlier work (Jaeger, 2013).

\[
w_{ab}(t+1) = w_{ab}(t) - \eta_{ab} \cdot \delta_{ab}(t)
\]

\[
\delta_{FLRFNN}^{\text{fed}}(t+1) = \delta_{FLRFNN}^{\text{fed}}(t) - \eta_{FL} \sum_{i=0}^{t} O^{(1)}(i - \tau) \cdot \delta_{FLRFNN}^{\text{fed}}(t - \tau)
\]

\[
\delta_{FLRFNN}^{\text{rec}}(t+1) = \delta_{FLRFNN}^{\text{rec}}(t) - \eta_{\text{rec}} \sum_{i=0}^{t} O^{(2)}(i - \tau - 1) \cdot \delta_{FLRFNN}^{\text{rec}}(t - \tau)
\]

where \(W_{FLRFNN}^{\text{fed}} = [\sigma_{y}, m, w_{l}, \vartheta_{b}] \) and \(W_{FLRFNN}^{\text{rec}} = \varphi_{y} \cdot \eta_{ab} \) is the learning rate of \(w_{ab} \). \(\eta_{FL} = [\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}] \) and \(\eta_{c} \) are the learning rates of weights of feed-forward and recurrent part of FLRFNN. \(i \) is the layer 2 number of critic network. \(n \) is the number of training samples. \(u \) is the own number of every layer units of FLRFNN. \(\tau \) is an arbitrary number of time steps in unfolded recurrent layer of FLRFNN. \(T \) is the total unfolded number of FLRFNN. \(O^{(1)} \) is the output number of every layers \((l = 1-5)\) of FLRFNN.

The learning rates \(\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3} \) and \(\eta_{ab} \) of IDC should be properly set in the BPTT algorithm. A relatively large or small learning rate may affect the progress of BPTT algorithm, and even lead to failure of the learning process. This paper thus uses the GAHTVPSO to find the optimal values of these parameters to improve the learning capability.

4. Learning Rates Adjustment Using GAHTVPSO

To further improve the online learning ability of the IDC, the GAHTVPSO algorithm is used to tune the learning rates \(\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3} \) and \(\eta_{ab} \). In the GAHTVPSO, each particle adjusts its position according to its own experience and those of its neighbors, including the current velocity, position, and the best previous position experienced by itself and its neighbors.

Two pseudo-random sequences \(r_{t} \sim \text{U}(0, 1) \) and \(r_{r} \sim \text{U}(0, 1) \) are used to simulate the stochastic nature of the algorithm. For all dimensions \(d \), let \(R_{x}^{d} \) and \(p_{best}^{d} \) be the current position and current personal best position. The velocity update law is shown in (32). In addition, the inertia weight is set at \(\omega = 0 \). GAHTVPSO can reduce a parameter setting the acceleration coefficients \(c_{1} \) and \(c_{2} \) can be modified by Eqs. (33) and (34) (Jaeger, 2013). These settings are called the time-varying acceleration coefficients.

\[
v_{i}^{d}(N + 1) = \omega v_{i}^{d}(N) + c_{1} \cdot r_{1} \cdot \left(p_{best}^{d} - R_{x}^{d}(N) \right)
\]

\[
+ c_{2} \cdot r_{2} \cdot \left(p_{best}^{d} - R_{x}^{d}(N) \right)
\]

\[
c_{1} = \left(c_{1f} - c_{1u} \right) \frac{N}{N_{\text{max}}} + c_{1u}
\]

\[
c_{2} = \left(c_{2f} - c_{2u} \right) \frac{N}{N_{\text{max}}} + c_{2u}
\]

\[
R_{x}^{d}(N + 1) = R_{x}^{d}(N) + v_{i}^{d}(N + 1)
\]
where v_i^d and R_i^d are the current velocity and position of the particle. N_{max} is the maximum number of iterations. c_1 and c_2 are the initial parameter settings, while c_1^\prime and c_2^\prime are the final parameter settings.

Step 1: Define the Basic Conditions

With $R_{i}^{d} = [R_1, R_2, R_3, R_4, R_5]$ for the learning rates (η_o, η_mp, η_as, η_dp and η_ab), the population size is set to $P = 15$, and the dimensionality of the particle is set to $d = 6$. The parameters need to be optimized within minimum and maximum ranges.

Step 2: Initialize the Location and Velocity

The initial locations $R_i^d(N)$ and velocities $v_i^d(N)$ of all the particles are randomly generated in the search space. The initial $pbest$ of a particle is set at its current position and the $gbest$ of a group is selected from among the $pbests$. The elements in vector $R_i^d(N)$ are randomly generated by

$$R_i^d \sim U[\eta_{min}^d, \eta_{max}^d]$$

(36)

where $U[\eta_{min}^d, \eta_{max}^d]$ designates the outcome of a uniformly distributed random variable ranging over the given lower and upper bounded values η_{min} and η_{max} of the learning rate.

Step 3: Determination of the Fitness Function

For each vector R_i^d, a fitness value should be assigned and evaluated. In this paper, a suitable fitness function is selected to calculate the fitness value as

$$FIT = \frac{1}{0.1 + \text{abs}(\omega_n - \omega_w) + \text{abs}(V_s - V_s^*)}$$

(37)

where FIT is the fitness value, and $\text{abs}(\cdot)$ is the absolute function. 0.1 is added to the dominant part to avoid approaching infinity.

Step 4: Selection of Pbest and Gbest

Each particle R_i^d memorizes its own fitness value and chooses the maximum one that is the best so far as $pbest_i^d$. The maximum vector in the population $pbest_i = [pbest_1^d, pbest_2^d, \ldots, pbest_p^d]$ is then obtained. Moreover, each particle R_i^d is set directly to $pbest_i^d$ in the first iteration, and the particle with the best fitness value among the various $pbest$ is set to be the global best $gbest$.

Step 5: Check the Gbest for Updates:

If $gbest$ has not changed for some designated steps, crossover operation is performed on $gbest$ using a GA chromosome. The reorganization of the position and velocity are carried out by

$$R_i^d(N+1) = c_3 \cdot \text{rand}(\cdot) \cdot \left(gbest_i^d - R_i^d(N)\right)$$

(38)

$$\begin{align*}
 p_{\text{child1}} &= \beta P_{\text{parent1}} + (1 - \beta) P_{\text{parent2}} \\
 p_{\text{child2}} &= \beta P_{\text{parent2}} + (1 - \beta) P_{\text{parent1}}
\end{align*}$$

(39)

$$\begin{align*}
 v_{\text{child1}} &= v_{\text{parent1}} + v_{\text{parent2}} \\
 v_{\text{child2}} &= v_{\text{parent1}} + v_{\text{parent2}}
\end{align*}$$

(40)

where c_3 is the weighting factor of the stochastic acceleration, and $\text{rand}(\cdot)$ represents a uniform random number between 0 and 1. P_{parent} and P_{child} are the parent and child generations of the position. v_{parent} and v_{child} are the parent and child generations of the velocity. β represents the interpolation value between the parent and child generations, and this is a uniform random number between 0 and 1.

Step 6: Update Velocity and Position

The new velocity is then added to the current position of the particle to obtain its next position using Eq. (32) and Eq. (35).

Step 7: Check Convergence

Steps 3-6 are repeated until the best fitness for $gbest$ is obtained or a set number of generations are reached. The final
IV. CASE STUDIES AND SIMULATION RESULTS

Many tests were carried out to test the IDC. The OWF with HVDC in Fig. 1 was built in a PSCAD/EMTDC environment. The FLRFNN and critic network with GAHTVPSO were implemented in MATLAB. The parameters and initial values of the system are shown in Table 1. The optima capacity and location of STATCOM is determined by search algorithms in (Lin et al., 2009). To check the effectiveness of the proposed IDC, it is compared with the external linear damping controller, the PID damping controller (Mitra et al., 2011) and the Grey-Elman Neural Network (G-ENN) (Lin et al., 2013), with the parameters used in this work being taken from the references.

Case 1. Single-Machine Infinite-Bus (SMIB) System

The wind speed is assumed to be 14 m/s and the onshore grid voltage decreases 20% at 2nd second and increases 20% at 4th second. Figs. 7(a)-(c) shows the dynamic responses and the proposed shows a better performance. It also shows that IDC has a better transient stability for both real and reactive powers. Fig. 7(c) shows the capability of IDC to regulate the bus voltage. The methods can fast support the onshore grid voltage at 1 p.u.

Case 2. Sudden Wind Change Test

Figs. 8 show the stability of dynamic responses when the wind speed changes from 14 m/s to 11 m/s at the 10th second, from 10 m/s to 19 m/s at the 15th second and from 19 m/s to 14 m/s at the 17th second. Fig. 8(a) shows that the smallest amplitude changes for real powers can be obtained for IDC. Similarly,
Table 2. Results for Several Methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Interactive Number</th>
<th>CPU Time (sec)</th>
<th>Mean Square Error (10^{-3})</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAHTVPSO</td>
<td>37</td>
<td>1.48</td>
<td>1.23</td>
<td>98.77</td>
</tr>
<tr>
<td>MPSO</td>
<td>33</td>
<td>1.32</td>
<td>4.36</td>
<td>95.64</td>
</tr>
<tr>
<td>IPSO</td>
<td>57</td>
<td>2.28</td>
<td>5.08</td>
<td>94.92</td>
</tr>
<tr>
<td>Fuzzy</td>
<td>98</td>
<td>3.92</td>
<td>12.35</td>
<td>87.65</td>
</tr>
</tbody>
</table>

Fig. 8(b) show that magnitudes change. It can be clearly seen that when the designed IDC is combined with the STATCOM, the PCC voltage can have the smallest variations onshore bus voltage are regulated to 1 p.u. The dynamic responses in damping out the electrical torque oscillations in the wind turbine are shown in Fig. 8(c). The results show that the proposed IDC is better than external linear damping controller, designed PID damping controller and the G-ENN, and can produce the smallest variations. However, the power oscillation is effectively mitigated and the system stability is improved with either one of the damping options.

Case 3. Damping for Faults

A three-phase fault is simulated at the 25th second and is cleared at 25.1st second. Fig. 9(a) shows that IDC has a better damping effect and a faster convergence rate than others. The fault causes large fluctuations in the temporary voltage. Figs. 9(b) shows that IDC can effectively improve the onshore bus voltage transient stability. A faster voltage recovery is achieved bus voltage. Fig. 9(d) show that the rotor speed of the PMSG can recover more quickly to steady states.

Case 4. Learning Rates of GAHTVPSO Test

The learning rates of FLRFNN and the critic network are shown in Fig. 10. Using the online tuning learning rates based on GAHTVPSO, the results can be optimized for the proposed IDC when uncertainties occur. In addition, comparisons with four other PSO algorithms (21-22) are given in Table 2. From Table 2, we can see that GAHTVPSO has the best accuracy and has a faster convergence rate than other PSO approaches.
Fig. 1. The IEEE benchmark 12-bus hybrid multi-machine system.

Fig. 11. The IEEE benchmark 12-bus hybrid multi-machine system.

Fig. 12. The transient stability of the three phase fault.
Case 5. Multi-Machine System Test

In this case, the IEEE benchmark 12 bus hybrid multi-machine system (Mitra et al., 2011) is used for test consisting of three power generation systems, 12 buses, a BESS and a micro-turbine generations (MTG) as shown in Fig. 11. The OWF through a HVDC link with the STATCOM in Fig. 1 is connected to the multi-machine system at bus 4. The wind speed is assumed to be 19 m/s and a fault is simulated at 2nd second for a duration of 100ms at bus 4. Fig. 12(a) shows the real power of PMSG-based OWF connected to the multi-machine system. The dynamic responses are shown in Figs. 12(b)-(d). It can be seen that with IDC the generators rotor speed of G1-G3 and PMSG can recover more quickly to the steady state around 2.8 and 3.3 second.

A three-phase fault at bus 4 and bus 2 were simulated to test the system limit. The fault is simulated at 2nd and cleared after 100 ms. Figs. 12(f) shows the bus 4 voltage. It shows that the proposed IDC can effectively improve the bus 4 voltage within a few cycles and damps out the power angle oscillations around 5 and 5.5 second while other controllers could not achieve.

V. CONCLUSION

This paper demonstrated the effectiveness of the proposed IDC for STATCOM in damping out the oscillations of the OWF. The adaptive critic network uses the FLRFNN controller to provide the optimal damping control signal to the STATCOM, and GAHTVPSO algorithm is used to improve the learning rates on line. The results of the simulations show that this approach can effectively stabilize the network under faults. The proposed STATCOM damping controller mitigates the oscillations and can also solve the problem of power stability.

REFERENCES

Proceeding of IEEE Conference of Congress on Evolutionary Computation, Seoul, South Korea, 81-86.

