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Fig.8. Position tracking errors of the three methods with seventh-order 

profile. Adapted from (Lee et al., 2017). 

 
 

 
Fig. 9. Energy consumption of the three methods with seventh-order pro-

file. Adapted from (Lee et al., 2017). 

 
 

 
Fig. 10.  Position tracking errors of the three methods with a sinusoidal 

profile. Adapted from (Lee et al., 2017) 

 
 

method is plotted in Fig. 8.  We observed that the transient re-
sponse was degraded in the FOC method for current tracking.  
On the other hand, the proposed methods (cases 1 and 2) re-
duced the peak phenomenon in the transient because the con-
trol gain was scheduled.  When the acceleration period started, 
the large peaks of tracking error were observed due to static 
friction regardless of the control method.  In the steady-state  

 
Fig. 11.  Energy consumption of the three methods with a sinusoidal pro-

file. Adapted from (Lee et al., 2017). 

 
 
period, the inevitable position ripples are observed due to 
the resonance and frequency of the system.  In Fig. 9, we can 
analyze that there is a trade-off between maximizing tracking 
performance and minimizing energy consumption since the 
cost function takes both state errors and inputs into account. 
The position tracking of the three methods is compared in Fig. 
10.  At time 0.2 [s], a peak-phenomenon in the tracking errors 
was observed for all methods because of static friction.  Over-
all, the proposed methods (cases 1 and 2) showed more accu-
rate transient behaviors than the FOC (case 3). 

The tracking errors of the three methods were all nearly zero 
during the steady state period.  Fig. 11. shows the energy con-
sumption of the three methods.  The proposed methods (cases 
1 and 2) were more energy efficient than the FOC method.  By 
incorporating greater input weighting, energy consumption 
was minimized in case 1.  

3. Proximate In-Phase Current Estimator (PIpCE) 

To evaluate the performance of the proposed method, we 
performed experiments for two cases as follows: 

1) Case 1 (PIFF with conventional LPFs) 
2) Case 2 (PIFF with proposed PIpCE).  
The current tracking performances for both cases are illus-

trated in Fig. 12.  In case 1, we see that the conventional LPFs 
result in a greater phase lag than the proposed PIpCE. 

Both methods use the same control structure, which imple-
ment the feedforward and feedback control law.  Furthermore, 
the proposed method provides better current tracking perfor-
mance in terms of the magnitudes of currents.  It is worth no-
ticing that the tracking error was not removed, which is a result 
of the non-constant back-emf effect.  The position tracking er-
rors for both cases are shown in Fig. 13.  The ripple width of 
case 1 was more than double��that of case 2.  A slightly im-
proved transient response was also observed in the position 
tracking of case 2.  During the steady-state period, a low-fre-
quency ripple (approximately 2–3 Hz) resulted from a flexible 
coupler between the motor and the sensor.  We performed an-
other experiment to analyze the resonance mode under high-
speed operation with a small step angle.  In the constant ve-
locity period, the maximum velocity changed from 11.8 to  
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Fig. 12.  Current tracking performance of both methods during accelera-

tion velocity period ( max =11.8 rad/s), (a) Case 1: PIFF control-
ler and conventional LPF,  (b) Case 2: PIFF controller and pro-
posed PIpCE. Adapted from (Lee et al., 2016). 

 
 

 

Fig. 13.  Position tracking performance of both methods ( max  =11.8 

rad/s). Adapted from (Lee et al., 2016) 

 
 
17.7 rad/s.  The current tracking performances of steady-

state periods are shown in Fig. 14.  The proposed PIpCE still 
had better current tracking performances than the conventional 
method, which provided poor current tracking performance at 
high speed including noticeable harmonics.  On the other hand, 
harmonics were not evident in the current tracking of the pro-
posed PIpCE.  The position tracking performance of both 
methods is illustrated in Fig. 15.  The position tracking perfor-
mance in case 2 was uniform even at high speed, whereas the 
results in case 1 were due to the system being on the verge of 
step-out. 

 
Fig. 14.  Current tracking performance of both methods during accelera-

tion velocity period ( max =17.7 rad/s), (a) Case 1: PIFF control-
ler and conventional LPF,  (b) Case 2: PIFF controller and pro-
posed PIpCE. Adapted from (Lee et al., 2016) 

 
 

 
Fig. 15.  Position tracking performance of both methods  

( max =17.7 rad/s). Adapted from (Lee et al., 2016). 

V. CONCLUSION 

In this survey paper, we explain the advanced control meth-
ods for Permanent Magnet (PM) stepper motors to enhance po-
sition tracking performances.  First, we introduce basic princi-
ples of open-loop control of PM stepper motors including mi-
crostepping, then explain various advanced feedback control 
techniques based on Lyapunov stability.  Second, we briefly 
summarize how a PM stepper motors can be modelled as a lin-
ear parameter varying system and its tracking performance op-
timization based on sense is made with the nonlinear torque 
modulation.  Third, we show equivalency of field orient con-
trol and field weakening control to microstepping with 
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nonlinear torque modulation.  Then we introduce Proximate 
In-Phase Current Estimator (PIpCE) for PM stepper motors 
and a phase compensated Phase-Compensated Microstepping 
for PM stepper motors.  Their performances are illustrated by 
experiments on PM stepper motors. 
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