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ABSTRACT 
Today’s supply chain environment requires a new spirit of 

cooperation between the buyer and the vendor. So the charac-
teristics of current manufacturing systems are consistent high 
quality, small lot sizes, frequent delivery, and close supplier ties. 
Just-in-time (JIT) production is an integrated set of activities to 
achieve those objects by adopting continuous quality im-
provement and developing a long-term partnership. This paper 
presents the optimum joint economic lot size in a case where 
multiple buyers are demanding one type of item from a single 
vendor by summing the ordering/setup cost, holding cost and 
quality improvement investment. This model is useful par-
ticularly for integrated inventory systems where the vendor and 
the buyer form a strategic alliance for profit sharing. 

I. INTRODUCTION 
In the current supply chain management (SCM) environment, 

companies are using JIT production to gain and maintain a 
competitive advantage. JIT requires a spirit of cooperation 
between the buyer and the vendor, and it has been shown that 
forming a partnership between the buyer and the vendor is 
helpful in achieving tangible benefits for both parties [5]. In 
this complex environment, successful companies have devoted 
considerable attention to reducing inventory cost and improv-
ing quality simultaneously. 

Goyal [2] suggested a joint optimum economic lot size 
model with the objective of minimizing the total relevant costs 
for both the vendor and the buyer, in which a cooperative ar-
rangement is enforced by some contractual agreement. Baner-
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jee [1] proposed an optimum economic lot size model by as-
suming that the vendor produces to order for a buyer on a 
lot-for-lot basis under deterministic conditions. Goyal [2] 
generalized the model of Banerjee [1] by relaxing the assump-
tion of the lot-for-lot policy of the vendor and showed that his 
joint optimum economic lot size model where the vendor’s 
economic production quantity per cycle is an integer multiple 
of the buyer’s purchase quantity provides a lower or equal joint 
total relevant cost when compared to Banerjee’s model [1] 
Goyal and Gupta [4] reviewed the related literature on models 
which provide a coordinating mechanism between the buyer 
and the vendor. Lu [11] relaxed Goyal’s [3] assumption of 
completing a batch before a shipment is started and explored a 
model that allowed shipments to take place any time during the 
production cycle with the delivery quantity to the buyer is 
known. Due to the frequent shipping policy proposed by the 
above model, the transportation cost should be taken into ac-
count in the relevant cost to investigate the relationship be-
tween number of shipments and inventory level. Shi and Su [18] 
suggested an integrated inventory model from the retailer’s 
perspective only, and have thus ignored the fact that the man-
ufacturer might have no incentive to accept returns. Ha and 
Kim [6] proposed a single-buyer single-vendor integrated 
model, under deterministic conditions, for a single product with 
a multiple shipments strategy including transportation cost. Hill 
and Omar [7] considered a supply chain in which a ‘vendor’ 
supplies a product to a ‘buyer’. Lin and Yeh [12] illustrate that 
the best supply chain system benefit can be through coordi-
nating the buyer's ordering lead time and the vendor's pricing 
policy also consider the risk costs and the effect of imperfect 
quality. 

However, since the previous studies mainly focused on sin-
gle-buyer situations, they are incomplete models of real supply 
chain environments. One supply chain may consist of not only 
one buyer or a sole buyer who demands an item from a deferent 
location. Siajadi et al [19] addressed a single-vendor multi-
ple-buyer integrated inventory model to minimize joint total 
relevant cost for both vendor and buyer with a multiple ship-
ment policy. 

The challenge for business today is to produce quality 
products or services efficiently. Just-in-time production seeks 
to eliminate scrap and rework in order to achieve the reduction 
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of waste. Buyers, who want to establish a long-term supplier 
partnership, should select the supplier which can provide a high 
level of consistent quality and delivery reliability. Certainly, 
there are many ways to develop a shared benefit partnership, 
for instance, a foundation of integrated inventory model. In 
order to investigate the relation between quality imperfection 
and optimal order lot sizes, the imperfect production situation is 
considered, that is, the quality-related costs have been included. 
Porteus [16] and Rosenblatt and Lee [17] first presented this 
kind of relationship significantly. According to Porteus [16], 
there are many abundant quality improvement related litera-
tures, for example: see Keller and Noori [9], Hong and Haya [8], 
Ouyang and Chang [14], Yang and Pan [21] and Ouyang et al 
[15]. Kevin Hsu and Yu [10] considered an inventory model 
that vendor can offer a one-time-only price discount to motivate 
buyers to order a special quantity for imperfective items. 

This paper presents Siajadi et al [20] models in which the 
production process is imperfect. Building upon the work of 
Siajadi et al [20], we simultaneously optimize the or-
der/production cycle time, shipment numbers and process 
quality with the objective of minimizing the total relevant cost. 
A procedure for finding the optimal solution is developed, and 
three numerical examples are given to illustrate the advantages 
of this model. 
 

II. NOTATIONS AND ASSUMPTIONS 
To establish the proposed model, the following notation is 

used: 
Dj : demand rate per unit per unit time for buyer j; 
P : production rate per unit per unit time; 
Aj : ordering cost per order for buyer j; 
S : setup cost per lot; 
T : ordering or production cycle time; 
m : number of buyers; 
nj : number of shipments for buyer j; 
Hv : vendor’s holding cost per unit per unit time; 
Hbj : buyer’s holding cost per unit per unit time for buyer j; 
ATj : transportation cost per shipment for buyer j; 
i : the fractional per unit time opportunity cost per dollar 

invested in stocks; 
j : index of buyers. 
The major assumptions made in the paper are listed below: 
(1) There is a single vendor and multiple buyers for a single 

product.  
(2) The product is manufactured with a finite production 

rate P, and this rate is greater than the sum of the demand 
rate  (

1=
> ∑m

jj
P D ).. 

(3) The production lot size is an amount that is equal to the 
sum of order size from all buyers. 

(4) The implementation of shipping policy for the first 
shipment follows a sequence, the vendor starts to deliver 
first goods to the buyer who is defined to be the first 
buyer, and then the defined second buyer’s goods will 
be shipped and the third one follows and so on.    

(5) The production lot size is delivered in a number of 
equal-size shipments for each buyer, where the number 
and the size of the shipments for each buyer might be 
different. 

(6) The order cycle time for each buyer and the production 
cycle time for each vendor is equal. 

(7) Inventory is periodically reviewed and replenished. 
(8) The replenishment lead time is of zero duration. 
(9) No shortages are allowed. 
The out-of-control probability θ  is a decision variable, and 

is illustrated by a logarithmic investment function. The quality 
improvement and capital investment is illustrated by 

( ) ( )0lnq qθ θ θ=  for 00 θθ ≤< , where 0θ  is the current 
probability that the production process can go out of control, 
and 1 ξ=q , with ξ  meaning the percentage decrease in θ  
per dollar increase in ( )θq . The application of the logarithmic 
function on capital investment and quality improvement has 
been proposed by many authors, for example, Porteus [16], 
Hong and Hayya [8], Ouyang and Chang [14], Yang and Pan 
[21] and Ouyang et al [15]. 

III. BASIC MODEL 
In this study, a model proposed by Siajadi et al [19] will be 

considered, which posits a situation where in a single vendor 
has a multiple-shipment policy to satisfy one buyer. Notice that 
the vendor’s inventory pattern of this model is an extended 
pattern from Joglekar [13]. 

The vendor produces the item in the quantity of ΣDjT, and 
the buyer j will receive it in nj lots. The form of the vendor’s 
inventory is shown in Figure 1. For the vendor, its average 
inventory can be evaluated as: 
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Fig. 1.  The vendor’s inventory pattern 



Therefore, the vendor’s holding cost per unit time is 

Holding cost = 
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Since the vendor’s initial setup cost is S, and the production 
cycle time is given by T. The total unitary time cost for the 
vendor is given by:  
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On the buyers’ side, the average inventory on hand during a 
cycle of buyer j is 
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Therefore, the buyers’ total holding cost is  

Holding cost = 
12

m
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And the buyers’ total ordering and transportation cost can be 
summed as: 

Total ordering and transportation cost = ( )
1
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j
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Hence, the total unitary time cost for the buyers is given by: 

( )
1 1

1
2

m m
j

j j Tj bj
j j j

DTBTC A n A H
T n= =

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑  (4) 

As the cost functions for the vendor and the buyers show 
above, the joint total cost is the sum of VTC and BTC as: 
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For the sake of including the situation of an imperfect pro-
duction process, the assumption made in the model proposed by 
Porteus [16] is considered. The vendor produces the items by a 
quantity of ΣDjT, the production process becomes out of con-
trol and begins to produce defective products, with a given 
probability of θ. Porteus [16] suggested the expected number of 
defective items in a run of size ΣDjT can be evaluated as 
T2(ΣDj)2θ/2. Suppose there is an additional cost g to deal with 
defective units, then the expected defective cost per unit time is 
given by gT (ΣDj)2θ/2.  

Thus, the joint total unitary time cost incorporating the de-
fective cost per unit time can be represented by 
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IV. IMPLEMENTATION INTEGRATED INVENTORY 

MODEL INVOLVING QUALITY IMPROVEMENT 
INVESTMENT 

In this paper, the effect of investment on quality improve-
ment will be discussed as an integrated model whose objective 
is to minimize the sum of ordering/setup cost, holding cost, 
quality improvement and transportation cost by simultaneously 
determining the optimal values of T, nj and θ. Hence, according 
to Siajadi et al [20] the total relevant cost per unit time is 
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Subject to 
1 2 3, , ,...., 1≥mn n n n , 
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and 00 θ θ< ≤ . 
There are three constraints which restrict equation (7), the 

first constraint is the requirement that each buyer must be 
shipped at least one time, the second one is the assurance of the 
assumption made above, that is, each buyers’ first shipment has 
to be done in sequence, and the last constraint says that the 
optimal θ is an positive number and cannot be greater than θ0. 
In order to find the minimum cost for this problem, relax the 
second and the third constraints temporarily and take the first 
partial derivatives of TRC with T, nj and θ respectively as 
follows to minimize the total relevant cost function: 
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Because the TRC is convex in T, nj and θ, setting equations 
(8) and (10) to zero, the optimal out-of-control probability and 
numbers of shipments for buyer j can be evaluated as: 
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The value of *
jn  should be an integer number, if the calcu-

lated *
jn  is not an integer, take the adjacent integer value cor-

responding to which total cost is minimum. Substituting equa-
tion (12) into equation (8) and setting the revised equation to 
zero, the optimal ordering/production cycle time can be evalu-
ated as: 
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The proof for convexity of TRC on T, nj and θ is included in 
Appendix. 

Restricted by the second constraint, one or more shipment 
numbers calculated form equation (12) may be invalid and 
those shipment numbers should be recalculated. In this kind of 
case, we suggest that the first buyer’s shipment number is re-
duced to the largest integer that complies with the constraint. 
Based on 1 2≥ ≥n n … ≥ mn , the remaining buyers’ shipment 
numbers would not be altered or increased correspondingly. 

The following procedure is followed to find optimal values 
of ordering /production cycle time, shipment numbers and 
defective probability for the problem under investigation. 

Step 1. Set θ = θ0 and perform (i)—(iii): 

(i) Substitute θ into equation (13) to find T. 
(ii) Use T to determine θ from equation (11). 

(iii) Repeat (i)—(ii) until no change occurs in the 
values of T and θ. Denote these solutions by T

*
 

and θ
*
, respectively. 

Step 2. If *
0θ θ≤ , then the solution found in step 1 is op-

timal for the system and go to step 4. 
Step 3. If *

0θ θ> , set θ
*
= θ0 and substitute θ

*
 into equation 

(13) to compute T
*
. 

Step 4. With a given number of buyers, perform (i)—(iii) to 
determine the order for each buyer: 

(i) Set each buyer be the first buyer in advance, and 
substitute T

* 
into equation (12) to calculate n1 of 

each buyer. 
(ii) Compare the value of n1 of each buyer, and assign 

the largest one to be the real first buyer. 
(iii) Consider remaining buyers, set each of them to be 

the j th buyer ( j = 2, 3, . . , m) and use equation 
(12) to compute n j, then compare the value of n j 
and assign the largest one be the real j th buyer 
and so on until everyone is allocated a position. 
Denote these solutions by *

jn , for j = 1, 2, . . , m, 
respectively. 

Step 5. If all *
jn  satisfy the constraints, then those shipment 

numbers found in step 4 are optimal for associated 
buyers. 

Step 6. If one or more *
jn  do not satisfy the constraints, then 

find new *
jn  through a numerical procedure to 

minimize equation (7). 

V. NUMERICAL ILLUSTRATION 
To illustrate the solution procedure presented above, con-

sider an inventory item with the following related parameters 
tabulated in Table 1. For comparison, a model without quality 
investment will be also considered; the traditional integrated 
inventory model is given by: 
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To obtain the minimum cost ordering/production cycle time 
and shipment numbers, take the first derivative of TRC, and set 
it to zero; thus, 
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The function TRC is convex in T and nj, therefore, solving 
for the optimal ordering/production cycle time in equation (15) 
and optimal shipment numbers in equation (16), we obtain 
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Example 1. Suppose there is only one buyer, that is, buyer A. 
Applying the proposed procedure to cope with one buyer, the 
optimal solutions are contained in Table 2. From the results in 
Table 2, the total relevant cost has been reduced by the effects 
of quality improvement in spite of the holding cost of the tra-
ditional model being higher than the proposed models. 

 
 

 
Example 2. Taking additional buyer B into account, the re-

sults of the one-vendor two-buyer partnership are summarized 
in Table 3. In this circumstance, the integrated setup cost, 
transport cost, rework cost and holding cost of the proposed 
model are all lower than those of the traditional model, due to 
the improved imperfect probability. The influence of quality 
improvement generates a higher ordering/production cycle 
time, shipment numbers and lower average inventory for the 

buyers. 

 
Example 3. All buyers listed in Table 1 will be considered 

now. Again, apply the procedure to deal with a one-vendor 
three-buyer problem. The solutions are illustrated in Table 4. 
From the results in Table 4, the savings are very obvious; there 
is a reduction approaching 52% of total relevant cost in this 
case. Because, when the demand increases, the vendor’s pro-
duction quantity relatively goes up. If a higher defect rate oc-
curs in the process, it will make both the vendor and the buyer 
suffer considerable damage to deal with the imperfect items. 
Furthermore, in the proposed model, the closer the relationship 
between demand rate and production rate the better the optimal 
θ which can be reached. Hence, it is worthwhile to invest for 
quality improvement if there are a large number of demands, 
especially in the case of supply and demand getting on for 
balance if assumption 2 is satisfied. 

 

VI.  CONCLUSION 
This paper establishes an integrated inventory model based 

on previous work of Siajadi et al [19] to investigate the order-
ing/production cycle time, the numbers of deliveries and qual-
ity in the one-vendor multiple-buyer purchasing partnership 
and an imperfect process environment. The objective is to 
minimize the total relevant cost per unit time through small lot 
size, frequent delivery and investment for quality improvement, 
and adopting classical optimization techniques to simultane-
ously optimize ordering/production cycle time, shipment 
numbers and process quality. A procedure for finding the op-
timal solution is developed, and three numerical examples are 
given to illustrate the advantages of this model. 

The return on investment for quality improvement is sub-
stantial and many papers have shown that improving quality 
could reduce waste, in other words, cut the cost. In addition, the 
probability of defects also makes a great impact on the inven-
tory policy regarding production cycle and lot size, so it is 
important to always take quality issues into account for any 
business in a competitive supply chain environment nowadays. 
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Table 4.  Optimal solutions for example 3 

*
1n  *

2n  *
3n TRC 

($) 

Sav-
ings
(%)

m = 3 

T
*  

(unit time) θ
*
 

(unit)   
Traditional 
model 0.14 0.0002 2 2 1 9307.69  

Proposed 
model 0.46 0.0000007247 8 6 4 4471.47 51.96

% 

Table 3.  Optimal solutions for example 2 
*
1n  *

2nm = 2 
T

*  

(unit time) θ
*
 

(unit)

TRC 
($) 

Savings
(%) 

Traditional model 0.19 0.0002 2 2 5466.78  

Proposed model 0.38 0.0000026588 5 4 3615.23 33.87%

 

Table 1.  Data of the example problem. 

Buyer A B C

Transportation cost, ATj ($) 30 30 20

Holding cost, Hbj ($) 8 8 8
Demand rate, Dj (unit/unit 
time) 1000 1300 1700

Ordering cost, Aj ($) 100 100 80

Vendor  
Production rate, P(unit/unit 
time)  5500 

Setup cost, S ($)  200 

Holding cost, Hv ($)  4 

Rework cost, g($)  15 

Interest rate, i($/unit time)  0.1 

iq(θ0/θ)  400 ln(0.0002/θ) 

Table 2.  Optimal solutions for example 1 
*
1n  

m = 1 
T

*  

(unit time) 
θ

*
 

(unit) 

TRC 
($) 

Savings
(%) 

Traditional 
model 0.31 0.0002 3 2512.17  

Proposed mod-
el 0.42 0.0000128166 4 2123.87 15.46%
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APPENDIX 
The Hessian matrix H of TRC can be obtained as follow: 

H=
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Next, evaluate the principal minor of H at optimal solution. 
The first principal minor of H is 

11H  = ( )
2

2 3
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2
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Since from equation (A.1), the second principal minor of H 
is:  
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The third principal minor of H is: 
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*

1

2
=

∑
m

j Tj
j

n A / *2 j Tjn A  is always greater than 1, hence, we have 

33H  > 0.  
Consequently, the results from (A.2) to (A.4) show that the 

Hessian matrix is positive and TRC is convex with respect to T, 
θ  and jn . 
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