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ABSTRACT 
In this study, the least squares Trefftz method (LSTM) is 

adopted for analyzing the eigenfrequencies problems governed 
by homogeneous Helmholtz equations. The Trefftz method, 
one kind of boundary-type meshless collocation methods, does 
not need mesh generation and numerical quadrature. Since the 
system of linear algebraic equations obtained by Trefftz 
method is highly ill-conditioned, the least squares method is 
adopted to stabilize the numerical scheme in this study. In the 
eigenproblem, the response amplitudes from an external source 
are used to determine the resonant frequencies. By adding an 
external source, the homogeneous boundary condition becomes 
inhomogeneous. Then we can employ the LSTM to easily solve 
this problem. In this paper, the LSTM and the method of ex-
ternal source are used to solve this eigenfrequencies problems 
governed by Helmholtz equations. Several numerical examples 
are provided to verify the accuracy and the simplicity of the 
proposed numerical scheme.  
 

I. INTRODUCTION 
Waveguide is a thin-tube device and is used to transfer and 

guide electromagnetic waves. Since it can transfer electro-
magnetic wave, it is very useful in many electronic applications 
and is also an important device in optics. The determination of 
eigenfrequencies of the waveguide is important when the elec-
tromagnetic waves of specific frequency have to propagate in 
the designed direction. In order to resolve the eigenfrequencies 
problems, many researchers developed numerical methods for 
acquiring the eigenfrequencies of waveguides in the past, such 
as Chen et al. [3], Dong et al. [7], Fan et al. [10], Kuttler [16], 
Lin et al. [18], Reutskiy [22], Tsai et al. [27], Young et al. [28] 
etc.  
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With the rapid developments of computer equipments, there 
are many numerical schemes, which are proposed to solve 
engineering problems and can be classified as the 
mesh-dependent and the meshless methods. The meshless 
numerical methods do not need mesh generation and numerical 
quadrature, so they will cost less computational resources, such 
as the method of fundamental solutions (MFS) [5, 9, 14, 26, 29] 
the radial basis functions collocation method (RBFCM) [6, 8, 
15, 21, 30], the meshless Galerkin method [2], the Trefftz 
method [1, 4, 11, 12, 13, 17, 19, 20] etc. Jiang et al. [15] used 
the RBFCM, one of the popular meshless methods, to analyze 
the eigenproblems of elliptic waveguides. The boundary nodes 
and interior nodes are all required during the computation; 
hence the requirement of huge number of nodes in the simula-
tion will limit the applications of the RBFCM. Young et al. [28] 
adopted the MFS with the singular value decomposition (SVD) 
technique to solve the eigenproblems of waveguides. The 
homogeneous partial differential equations and homogeneous 
boundary conditions are both important in eigenproblems. 
Reutskiy [22, 23, 24, 25] recently proposed a novel numerical 
scheme by utilizing the method of external source (MES). The 
time-consuming SVD or direct determinant search method 
(DDSM) for dealing with the eigenfrequencies problems is no 
longer required in the MES. Following the lead of Reutskiy, 
Fan et al. [10] used the MFS and the MES to determine the 
eigenfrequencies of waveguides.  

The boundary-type meshless methods only need the bound-
ary information rather than the mesh of the computational 
domain, so these methods are simple and easy to be imple-
mented. The Trefftz method is one kind of boundary-type 
meshless methods and is more suitable for the eigenproblems. 
The numerical solutions of the Trefftz method can be expressed 
as the linear combinations of T-complete functions such that we 
only need to require the satisfactions of the boundary condi-
tions on the collocated boundary points. Since the governing 
equations in the eigenfrequencies problems is the Helmholtz 
equation, the characteristic length in modified collocation 
Trefftz method [19,20] is  incapable of reducing the 
ill-conditioned problem. So, we used the least squares method 
to ease the ill-conditioned problem in the Trefftz method.  
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In this study, we used the least squares method and the 
Trefftz method to form and resolve the system of linear alge-
braic equations. This proposed method, marked here as the 
LSTM, is used in this study to analyze the eigenfrequencies for 
different waveguides. Since the Trefftz method with external 
source can transfer the eigenproblem from a homogeneous 
problem into a series of inhomogeneous problems, the eigen-
frequencies can be determined by solving a series of direct 
problems. We will describe the governing equations and the 
LSTM in the following sections. Then the numerical results and 
comparisons of square, elliptic, concentric annular and eccen-
tric annular waveguides are provided in the section of nu-
merical results to validate the accuracy of the proposed method. 
 

II. GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS 

1. Governing Equation 
Maxwell’s equations system is an important system of partial 

differential equations used to describe the electromagnetic 
phenomena. The Maxwell’s equations are depicted as follows: 
         0,B∇⋅ =  ( )1  

          ,D ρ∇ ⋅ =  ( )2  

          ,BE
t

∂
∇× = −

∂
( )3  

          ,DH J
t

∂
∇× = +

∂
( )4  

where  B  and D  are magnetic flux density and electric flux 
density. E  and H  denote the electric field intensity  and mag-
netic field intensity. ρ  is the electric charge density and J  is 
the electric current density. By following some assumptions 
and mathematical derivations [10, 28], the governing equations 
of electromagnetic wave in frequency domain can be derived 
and be shown as: 
                     2 2 0,E k E∇ + = ( )5  

                     2 2 0,H k H∇ + = ( )6  

where 2k
c
ω π

λ
= =  is the wavenumber. ω  is the angular fre-

quency. c  is the wave velocity. λ  is the wavelength. Equations 
(5) and (6) are governing equations for electric field and mag-
netic field in frequency domain. 

2. Boundary Conditions 
In this waveguide problem, the governing equation is the 

homogeneous Helmholtz equation, 
        ( ) ( ) ( )2 2 , 0, , .k u x y x y∇ + = ∈Ω ( )7  

The electromagnetic wave can be divided into two kinds of 
basic waves. When ( ), Zu x y E= , it describes the transverse 

magnetic ( )TM  wave. ( ), Zu x y H=  represents the transverse 

electric ( )TE  wave. 

The boundary condition in the TM wave is the homoge-
neous Dirichlet boundary condition, 
         0.zE =  ( )8  

For the TE wave, the homogeneous Neumann boundary 
condition is imposed  
                0.zH

n
∂

=
∂

( )9  

The eigenfrequencies problem of waveguide is to determine 
the resonant wavenumbers and the numerical solutions for the 
homogeneous governing equation and homogeneous boundary 
condition. The schematic diagram for the eigenfrequencies 
problem is demonstrated in Fig. 1. 
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Fig. 1. The schematic diagram for the two-dimensional eigenproblem. 

 

III. NUMERICAL METHOD 

1. Trefftz Method and Method of External Source 
In this study, the Trefftz method is used to solve the 

Helmholtz equation. The T-complete functions for 
two-dimensional Helmholtz equation for the simple-connected 
and the doubly-connected domains are depicted in Eq. (10) and 
Eq. (11), 

( ) ( ) ( ) ( ) ( ){ }0 , cos , sin , 1,2,3,... ,j jJ kr J kr j J kr j jθ θ = ( )10  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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j j
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θ θ

θ θ
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  ( )11  

where ( )jJ  and ( )jY  are the Bessel functions of the first 

kind and the second kind. 
For problems in simply- and doubly-connected domains, 

the numerical solutions can be expressed by the linear combi-
nations of the T-complete functions listed in Eq. (10) and Eq. 
(11). The corresponding outer boundary of the computational 
domain, Ω , in the polar coordinates is given by 

( ) ( ){ }0 , ,0 2r rθ ρ θ θ πΓ = = ≤ ≤  and the corresponding inner 

boundary is given by ( ) ( ){ }1 , ,0 2r rθ η θ θ πΓ = = ≤ ≤ . The 

numerical solutions of the Helmholtz equation for simply- and 
doubly-connected domains in the Trefftz method can be ex-
pressed by the linear combinations of the T-complete functions.  
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coefficients that will be retrieved by enforcing the satisfactions 
of boundary conditions on the boundary collocation points. In 
Eq. (12) and Eq. (13), terms up to the N -th order are used to 
replace the infinite series in the original expressions. Once the 
unknown coefficients are obtained, the numerical solutions and 
its derivatives at any positions inside the computational domain 
can be found from Eq. (12) and Eq. (13). 

If we directly solve this eigenfrequencies problem by 
Trefftz method, the boundary condition is homogeneous along 
the whole boundary. So, it is non-trivial to solve the unknown 
coefficients  { } 0

N

j j
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=
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1
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j j
d

=
 by direct 

collocation. In a study by Reutskiy [22], she proposed the MES 
to transfer the eigenproblem. By adding an external source, the 
eigenfrequencies problem will be converted to a homogeneous 
Helmholtz equation with inhomogeneous boundary condition. 
The external source can be located at any place other than the 
computational domain [10]. The position of the external source 
is denoted by ( ),ext ext extX x y= . The inhomogeneous governing 

equation is in the following form 
       ( ) ( ) ( )2 2 ,extk u x x Xδ∇ + = − ( )14  

where δ  is the Dirac delta function. Thus, the numerical solu-
tion can be divided into the homogeneous solution and the 
particular solution: 
              ( ) ( ) ( ) ,h pu x u x u x= + ( )15  

where ( )hu x  is the homogeneous solution and ( )pu x  is the 

particular solution. The particular solution is also the funda-
mental solution of the Helmholtz equation and can be obtained 
by using the Fourier transform theory: 
            ( ) ( ) ( )2

0 ,
4

extp
iu x H k x X= − ( )16  

where ( ) ( )2
0H  is the Hankel function of the second kind of 

zero order.  
Then, we use the Trefftz method to solve the homogeneous 

solution with inhomogeneous boundary condition. The inho-
mogeneous boundary condition is derived from the particular 
solution. The particular solution satisfies the inhomogeneous 
equation in Eq. (14) without boundary condition. Now the 
eigenproblem is converted to a Helmholtz equation with in-
homogeneous boundary conditions and it can be shown as: 
            ( ) ( )2 2 0,h hu x k u x∇ + = ( )17  

 
       ( ) ( ). . . . ,B C h B C pG u x G u x⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ( )18  

where [ ]. .B CG  is the partial differential operator for boundary 

condition. So, it is easy to solve the solution of the above sys-
tem by using the LSTM instead of the original eigenfrequencies 
problem.  

For a study range of wavenumber, we resolve the Helm-
holtz problems from Eq. (17) and Eq. (18) by using different 
wavenumbers. Then, the resonant responses of the numerical  
solutions by adopting different wavenumbers are recorded. The 
resonant responses is calculated by the following equation: 

            ( ) ( ) 2

1

1 ,
tN

h j
jt

F k u x
N =

= ∑ ( )19  

                      ( ) ( )
( )0

,d

F k
F k

F k
= ( )20  

where ( )dF k  is a dimensionless value. 
0k  is a reference wave-

number which is set as unit in our study. 
tN  is the number of 

measurement points randomly distributed inside the domain. 
When the peak appears in the resonant curve, the eigenfre-
quency can be obtained. Following the same procedure, a series 
of eigenfrequencies can be acquired for a waveguide. 

 

2. Least Squares Method 
The least squares method is a standard approach to ap-

proximate solution of over-determined or under-determined 
systems. In the beginning of simulation, M  boundary nodes 
will be distributed along the whole boundary, so a system of M  
linear algebraic equations will be formed by enforcing the 
satisfactions of boundary conditions ( Ax B= ). On the other 
hand, there are 2 1N +  unknowns in the solution expression for 
simply-connected domain. In all of the numerical tests, the 
number of equations is greater than the number of unknowns, 
which will form an over-determined system. 

For the linear algebraic equations that form is Ax B= , the 
residual error is defined as 
                      ,R Ax b= − ( )21  

where R  is the residual error matrix. The sum of the squared 
residuals is defined as  
                      ,TS R R=                   ( )22  

where S  is the sum of the squared residuals. The minimum of 
S  is approximated by taking gradient  

                   ( )min 0.SS
x

∂
≅ =

∂
( )23  

Then, Eq. (21) and Eq. (22) are substituted into Eq. (23), 
           ( )min 0.≅ − =T TS A Ax A b ( )24  

Finally, the system can be rewritten as  
                      .=T TA Ax A b ( )25  

To solve Eq. (25) by any solvers for linear system can  
obtain the unknowns of the original system. We will use the 
least squires method to solve the matrix system from the Trefftz 
method. To use the least squares method will evidently reduce 
the ill-conditioned problem and stabilize the numerical scheme, 
which will be experimentally shown in the next section. 



IV. NUMERICAL RESULTS AND COMPARISONS 
The eigenfrequencies problem governed by the 

two-dimensional Helmholtz equation will be resolved by the 
proposed algorithm, the LSTM and the MES. In this paper, we 
will investigate the square, elliptic, concentric annular and 
eccentric annular waveguides shown in Fig. 2 to verify the 
accuracy and simplicity of the proposed numerical method. For 
clarity, the following abbreviations are used in these examples: 
M  denotes the number of boundary nodes along Γ , N  de-
notes the order of Trefftz method, k  is the wavenumber, 
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 Fig. 2. The computational domain and corresponding boundary for (a)    
              Example 1, (b) Example 2, (c) Example 3 and (d) Example 4. 
 

1. Example 1 
In the first example, the square waveguide is the typical 

shape of eigenproblem and the corresponding resonance curve 
is demonstrated in Fig. 3. The parameters are set to be 73M = , 

=30N  and the external source is located at ( )10,10 .  
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Fig. 3. Resonance curve for square waveguide. 

 

We can easily find that there are five peaks appeared in the 
range from zero to twelve. In other words, there are five ei-
genfrequencies in this studying range. In Table 1, the numerical 
solutions are compared well with analytical solution and other 
numerical results obtained by the generalized differential 
quadrature (GDQ) method [7] and the MFS [10].  

In Fig. 4(a) - Fig. 4(d), the former four eigenmodes for the 
TM wave of the square waveguide are shown respectively and 
they are very similar to the analytical solutions. Therefore, the 
ability of using the LSTM to acquire the eigenfrequencies of 
square waveguide is verified and the numerical solutions are 
very stable and accurate. 

 
Table 1. Comparison of the present solutions with analytical and other 

numerical results in example 1. 

Analytical 

Solution 

MFS-ES

( 24M = )

[10] 

MFS-ES 

( 32M = ) 

[10] 

GDQ 

method 

( 324M = ) 

[7] 

LSTM 

( 73M = )

1 4.4429 4.4429 4.4429 4.4429 4.4429 

2 7.0248 7.0248 7.0248 7.0248 7.0248 

3 8.8858 8.8857 8.8858 8.8857 8.8858 

4 9.9346 9.9349 9.9346 9.9469 9.9346 

5 11.3237 11.3267 11.3237 11.3448 11.3237 
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             Fig. 4. The former four eigenmodes for square waveguide. 
 

2. Example 2 
In the second example, we solved the eigenfrequencies 

problem of an elliptic waveguide which is defined by the pa-
rametric equation, 
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( ){ }, cos , sin ,0 2 .x y x a y bθ θ θ πΓ = = = ≤ ≤  The following 

parameters are used in example 2: eccentricity 0.9e = , major 
axis 1a = , minor axis 21b e= − , 120M = , 25N = , 

( )10,10extX = .  

 
 

0 4 8 12
K

0

1250

2500

F(
x)

 
 (a) TM wave 

 

0 4 8 12
K

0

5000

10000

F(
x)

 
(b) TE wave 

Fig. 5. Resonance curves for elliptic waveguide for 
(a) TM wave and (b) TE wave. 
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Fig. 6. The former four eigenmodes for elliptic waveguide (TM wave). 
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Fig. 7. The former six eigenmodes for elliptic waveguide (TE wave).  
 
 

In Fig. 5(a), the resonance curve of the TM wave evidently 
shows the former eleven peaks in the range from zero to twelve. 
In Fig. 5(b), we can find many peaks in the resonance curve of 
the TE wave. The eigenfrequencies of the TM wave and the TE 
wave are compared well with other numerical solutions. The 
former four eigenmodes of the TM wave are shown in Fig. 6 
and the former six eigenmodes of the TE wave are depicted in 
Fig. 7. The solutions of the eigenfrequencies are solved very 
well and accurately. 

 

3. Example 3 
In the third example, a concentric annular waveguide is 

considered. The radii of the outer and inner boundaries of the 
concentric annular waveguide are 2 and 0.5 respectively. The 
centers of the outer and inner boundaries are all ( )0,0 . The 

following parameters are used in example 3: 60M = , 10N = , 
( )10,10extX = . 

The corresponding resonance curve for TM wave is dem-
onstrated in Fig. 8. It is obvious that there are many peaks in the 
curve and the former four eigenmodes are displayed in Fig. 9(a) 
to Fig. 9(d), respectively. Table 2 lists the former five eigen-
frequencies which are compared very well with analytical 
solution and other numerical solutions obtained by finite ele-
ment method (FEM) [3], boundary element method (BEM) [3], 
and MFS-DDSM [27]. 
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Fig. 8. Resonance curves for concentric annular waveguide.  

(TM wave). 
 
 

Table 2. Comparison of the former five eigenfrequencies for concentric 

annular waveguide in example 3. 

 Analytical  
Solution FEM 

[3] 
BEM 

[3] 

MFS- 
DDSM 

[27] 

LSTM 
( 60M = )

1 2.05 2.03 2.06 2.05 2.05 

2 2.23 2.20 2.23 2.22 2.22 

3 2.66 2.62 2.67 2.66 2.66 

4 3.21 3.15 3.22 3.21 3.21 

5 3.80 3.71 3.81 3.80 3.80 
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Fig. 9. The former four eigenmodes for concentric annular waveguide. 
 
 

4. Example 4 
For the fourth example, we solved the eigenfrequencies 

problem for an eccentric annular waveguide which is a dou-
bly-connected domain. The shape of the waveguide is the same 
as that in Ref. [16,18]. The following parameters are used in 
example 4: 64M = , 10N = , ( )10,10extX = .  

In Fig. 10, the resonance curve of the TM wave shows the 
former four peaks in the range from zero to eight. The former 
four eigenmodes in the TM wave are demonstrated in Fig. 11(a) 
to Fig. 11(d). The solutions of the eigenfrequencies are ob-
tained stably and accurately. In Table 3 the comparisons of the 
eccentric annular waveguide with other researches, such as 
Kuttler [16], Lin et al. [18] and Fan et al. [10], are tabulated. In 
this test, the number of collocation points is less than 100 points 
and it still can quickly achieve good results. 
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Fig. 10. Resonance curves for eccentric annular waveguide.  

(TM wave) 
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Fig. 11. The former four eigenmodes for eccentric annular waveguide. 
 
 



 
Table 3. Comparison of the former five eigenfrequencies for eccentric 

annular waveguide in example 4. 

 
Lin et al.  

[18] 

Kuttler 

[16] 

MFS-MES 

( 100M = ) 

[10] 

MFS-MES 

( 140M = ) 

[10] 

LSTM 

( 64M = ) 

1 4.8129 4.8119 4.8106 4.8106 4.8106 

2 5.5252 5.5125 5.5114 5.5114 5.5113 

3 6.2099 6.1735 6.1724 6.1724 6.1722 

4 6.8375 6.8002 6.7991 6.7991 6.7991 

5 7.4619 7.3957 7.3945 7.3945 7.3942 

 

V. CONCLUSIONS 
In this paper, we used the combination of the meshless 

numerical method and the least squares method to acquire the 
eigenfrequencies in four different waveguides. The LSTM and 
the MES are used to solve this eigenfrequencies problems 
governed by two-dimensional Helmholtz equation. By adding 
an external source, the homogeneous boundary condition be-
comes inhomogeneous and we can simply employ the meshless 
Trefftz method to solve this system. 

There are four examples: square, elliptic, concentric annular 
and eccentric annular waveguides. The numerical results are 
provided to validate the simplicity of the proposed LSTM. The 
resonant eigenfrequencies can be obtained from response fig-
ures. In comparing with other numerical results, the acquired 
eigenfrequencies are highly accurate and the numerical scheme 
is very stable. The numerical results for simply-connected 
domain and doubly-connected domain are all extremely accu-
rate by using very few nodes. Finally, it is numerically verified 
that the proposed method is very stable and simple for solving 
the eigenfrequencies of waveguides. 
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