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ABSTRACT 

This paper proposes a modified hybrid particle swarm opti-

mization (PSO) and the direct search method (DSM) for the 

solution of large-scale non-convex economic dispatch (NED) 

problem with valve-point effects. A novel diversity based par-

ticle swarm optimization (DPSO) with a fewer iterations re-

quired is developed to increase the possibility of generating 

high quality initial solutions for the DSM. The enhanced direct 

search method (EDSM) incorporates the parallel nature of 

evaluation programming into the direct search procedure to 

enhance its search capacity about global exploration and local 

optimization using the answer from DPSO as starting points. 

Many inequality and equality constraints can be handled 

properly in the direct search procedure. Appropriate setting of 

control parameters of the proposed hybrid DPSO-EDSM algo-

rithm is also recommended to increase the possibility of oc-

currence of escaping from local optimal solution. Numerical 

experiments are included to demonstrate that the proposed 

hybrid approach can obtain a higher quality solution with better 

performance than many existing techniques for the large-scale 

NED application. 
 

I. INTRODUCTION 

With increasing of the progressive exhaustion of traditional 

fossil energy sources and restructuring of the power industry, 

the non-convex economic dispatch (NED) problem may be-

come a more important issue for achieving the optimal utiliza-

tion of energy sources in a power system. It is widely recognized 

that a proper schedule of available generating units may save 

utilities millions of dollars per year in production costs. The 
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main objective of solving the NED problem is to minimize the 

total production cost of power plants subjected to the operating 

constraints of a power system. For simplicity, the fuel cost 

function for each generation unit in the NED problems has been 

approximately represented by a quadratic function and is solved 

using classical calculus-based techniques, such as the lambda 

dispatch approach, the gradient method and the Newton’s 

method (Wood and Wollenberg, 1996). Unfortunately, the 

generating units exhibit a greater variation in the fuel cost 

functions due to the physical operation limitations of power 

plant components, such as valve-point loading, prohibited op-

erating zones and combined cycle units (Walters and Sheble, 

1993). Even in a competitive electrical market environment, 

generator characteristics can also change with commercial 

interest, not just physical reality. The classical calculus-based 

techniques, such as lambda-iteration dispatch method, cannot 

be directly applied to solve this complicated problem due to its 

non-smooth fuel cost function. The importance of the NED 

problem is, thus, likely to increase, and more advanced algo-

rithms for the NED problem are worth developing to obtain 

accurate dispatch results. 

Dynamic programming (DP) is a widely used algorithm 

which has been proved effective in solving complex NED op-

timization problems. However, the main problem of the DP 

methods is the curse of dimensionality (Wood and Wollenberg, 

1996) and may lead to sub-optimal solutions (Liang and Glover, 

1992). Over the past decade, several optimization algorithms 

based on stochastic searching techniques, including simulated 

annealing (SA) (Wong and Fung, 1993), genetic algorithm (GA) 

(Walters and Sheble, 1993; Lee et al., 2011), evolutionary 

programming (EP) (Yang et al., 1996; Sinha et al., 2003),  

particle swarm optimization (PSO) (Gaing, 2003; Lu et al., 

2010)  and direct search method (DSM) (Chen and Chen, 2001; 

Chen, 2006) could be used to solve the highly nonlinear NED 

problem without any restrictions on the shape of the cost func-

tions. Among them, the PSO algorithm has received great at-

tention in solving the NED problem due to its simple concept 

and easy implementation. With a parallel searching mechanism, 

the PSO has high probabilities of determining the global or 

near-global optimal solution for the NED problem. However, 
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one of the main drawbacks of the PSO is attributed to provide a 

near-global optimal solution with long computing time for 

convergence. Recently, the DSM has also received great atten-

tion in solving the NED problem due to its flexibility and effi-

ciency. However, the standard DSM has premature convergence 

problem and easy to be trapped in local optima, especially while 

handling large-scale NED problems with more local optima and 

heavier constraints. The degree of complexity of the NED 

problem is related to the system-size. The larger system-size 

increases the non-linearity as well as the number of equality and 

inequality constraints in the NED problem. Therefore, devel-

opment of better hybrid algorithms is necessary to improve the 

solution quality and performance for the large-scale NED 

problem.  

Several hybrid optimization methods combining stochastic 

search techniques and deterministic techniques may prove to be 

very effective in solving the NED problem (Wong and Wong, 

1994; Bhagwan Das and Patvardhan, 1999; Victoire and 

Jeyakumar, 2004; Lu et al., 2008; Alsumait et al., 2010; Sub-

athra et al., 2015), such as the hybrid evolutionary program-

ming-sequential quadratic programming (EP-SQP), the hybrid 

particle swarm optimization-sequential quadratic programming 

(PSO-SQP), the hybrid simulated annealing-direct search 

method (SA-DSM) and the hybrid cross-entropy meth-

od-sequential quadratic programming (CEM-SQP). In general, 

the stochastic search technique was responsible for “global 

exploration” and the deterministic technique was used to “local 

optimization” with the current solutions of the stochastic search 

technique as the starting points. In this study, an alternative 

approach is proposed for the solution of large-scale NED 

problem with valve-point effects using a hybrid particle swarm 

optimization and direct search method. A novel diversity based 

particle swarm optimization (DPSO) with a fewer iterations 

required is developed to increase the possibility of generating 

high quality initial solutions for the DSM. The enhanced direct 

search method (EDSM) incorporates the parallel nature of 

evaluation programming into the direct search procedure to 

enhance its search capacity using the answer from DPSO as 

starting points. A comparative analysis with other existing 

techniques demonstrates the superior performance of the pro-

posed hybrid DPSO-EDSM algorithm in terms of both solution 

accuracy and convergence performances. Numerical experi-

ments are also included to demonstrate that the proposed hybrid 

DPSO-EDSM approach can obtain a higher quality solution 

than the PSO or DSM for the large-scale NED application. 

II. FORMULATION OF NON-CONVEX ECONOMIC 

DISPATCH PROBLEM 

The main objective of the NED problems is to determine an 

optimal combination of power outputs of the online generating 

units so that the fuel cost of generation can be minimized, while 

simultaneously satisfying all unit and system equality and ine-

quality constraints. Fig. 1 shows the configuration that will be 

studied in this paper. This system consists of N thermal gener-

ating units connected to a single bus-bar serving a received 

electrical load PD. The objective function can be formulated as 

follows: 

 





N

i

iiT PFFMinimize
1

)(                                                    (1) 

 

where
TF  is the total fuel cost. N  is the number of units in the 

system. )( ii PF  is the fuel cost function of unit i, and 
iP  is the 

power output of unit i. Generally, fuel cost of generation unit 

will be in second-order polynomial function (Wood and Wol-

lenberg, 1996).  

   
2)( iiiiiii PcPbaPF                                                               (2) 

 

where 
ia , 

ib  and 
ic  are the cost coefficients of unit i. 

 

     However, the thermal units with multi-valve steam turbines 

exhibit a greater variation in the fuel cost functions. Reference 

(Walters and Sheble, 1993) has shown the input-output per-

formance curve for a typical thermal unit with many valve 

points. The cost curve function of units with valve point effects 

is depicted in Fig. 2. The fuel cost functions should be replaced 

by the following to take into account the valve-point effects.  
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where 
ie  and 

if  are the cost coefficients of generator i re-

flecting valve-point effects.  

Subject to following constraints: 

 

  Power balance constraint  

   
Loss
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  Unit capacity constraints  

   maxmin

iii PPP                                                               (5) 

 

where DP  is the total load demand; 
LossP  is the transmission loss; 

min

iP  and max

iP  are minimum and maximum generation limits of 

unit i, respectively. The transmission losses are traditionally 

represented by 
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where 
ijB  is the coefficient of transmission losses. 

III. DEVELOPMENT OF PROPOSED HYBRID 

DPSO-EDSM ALGORITHM 
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1. Traditional PSO algorithm and its improvement 

PSO was original presented by Kennedy and Eberhart 

(Kennedy and Eberhart, 1995; Shi and Eberhart, 1998). It was 

inspired by observation of the behaviors in bird flocks and fish 

schools. While searching for food, the birds are either scattered 

or go together before they locate the place where they can find  

food. While the birds are searching for food from one place to 

another, there is always a bird that can smell the food very well, 

that is, this bird is perceptible of the place where the food can be 

found, having the better food resource information. Because 

they are transmitting the information, the birds will eventually 

flock to the place where food can be found. Therefore, the most 

optimist solution can be worked out in PSO algorithm by the 

cooperation of each individual.  

In the traditional PSO, the movement of a particle (bird) is 

governed by three behaviors which are inertia, cognitive and 

social. The inertia behavior simulates the particle to swarm in 

the previous direction (its present velocity). The cognitive be-

havior helps the particle to remember its previously visited best 

position (its previous experience; Pbest). The social behavior 

models the memory of the particle about the best position 

among the particles (the experience of its neighbors; Gbest). 

The position of each particle is updated using its velocity vector 

as shown in Fig. 3. The modified velocity and position of each 

particle can be calculated using the current velocity and the 

distance from 
qPbest  to Gbest as shown in the following 

formulas: 
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where NP is the population size;  k

qV  is the velocity of particle q 

in iteration k; 
k

qX  is the position of particle q in iteration k; 

k

qPbest  is the best value of fitness function that has been 

achieved by particle q before iteration k; kGbest  is the best 

value of fitness function that has been achieved so far by any 

particle; 1c  and 2c  represent the weighting of the stochastic 

acceleration terms that pull each particle toward qPbest  and 

Gbest  positions; rand means a random variable between 0.0 to 

1.0;   is the inertia weight factor; max  and min are the 

initial and final weight respectively; 
maxiter is the maximum 

iteration count, and iter is the current number of iterations. 

 Similar to other evolutionary algorithms, the PSO has a 

number of parameters that must be selected. The acceleration 

constants c1 and c2 should be determined in advance that con-

trol the maximum step size. The inertia weight  controls the 

impact of the previous velocity of the particle on its current one. 

The appropriate selection of these parameters justifies the pre-

liminary efforts required for their experimental determination. It 

is obvious that the Gbest is also an important factor to provide 

the information guiding to the global solution. However, it is not 

reasonable for social behavior to only employ the Gbest which 

is not normally the global optimal solution, containing parts of 

non-optimal information. The influence of social behavior to the 

next movement of the bird (particle) often is affected not only 

by the location of the bird (particle) which is in the best position 

of all, but also by the location of the bird (particle) which it 

randomly looked at when bird flocks start looking for food. 

Therefore, the traditional PSO has premature convergence 

problem and easy to be trapped in local optima if a promising 

area where the global optimum is residing is not identified at the 

end of the optimization process. 

To increase the possibility of exploring the search space 

where the global optimal solution exists, we follow a slightly 

different approach about the social behavior to further provide a 

selection of the global best guide of the particle swarm. The 

social behavior consists of two phases, the best particle position 

ever obtained (Gbest) and the random another particle best 

position (Pbestap), namely, another behavior. Fig. 4 presents the 

seeking algorithm of the proposed novel strategy. After in-

creasing another behavior to the social behavior, the Pbestap 

provides parts of information guiding to the global solution and 

gives additional exploration capacity to swarm. However, the 

information guiding to the global solution from the Pbestap may 

contain in the best particle position ever obtained, Gbest. The 

Pbestap cannot normally present a positive guidance. For 

maintaining population diversity, an intelligent judgment 

mechanism for the evaluation of the Pbestap behavior is devel-

oped to give a good direction to identify the near global region. 

The new velocity of each particle can be calculated as shown in 

the following formulas.  
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where c0 is the inertia weight factor; 

 Pbest

apN

Pbest

ap

Pbest

apap xxxPbest ,...,, 21  is the best position of a ran-

dom another particle, called particle ap; 

 qNqqq cccc 3,...,3,33 21  is the weight factor of another be-

havior; max3c  and min3c are the initial and final weight re-

spectively. 
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 The weight factor qc3  plays the role of maintaining a good 

spread of non-dominated solutions. From (10), if the 

)( q
k

ap
k xx   and )( q

k
Gbest

k xx   move at the same direc-

tion, the information guiding to the global solution from Pbestap 

and Gbest is too similar. Compared with the Gbest, ap
kx  is a 

bad position and the influence of particle ap to the movement of 

particle q is negative guidance. Otherwise, the information 

guiding to the global solution from Pbestap and Gbest is much 

more different if the )( q
k

Gbest
k xx   and )( q

k
ap

k xx   do 

not move at the same direction. As shown in Eq. (11), the in-

fluence of particle ap to the movement of particle q is positive 

guidance. The main attractive feature of intelligent judgment 

mechanism for the evaluation of the Pbestap behavior described 

above is to maintain the population diversity, which increases 

the possibility of occurrence of escaping from local optimal 

solutions. 

 

2. Standard DSM algorithm and its improvement 

DSM, first introduced by Chen and Chen, has been suc-

cessfully applied to economic dispatch problem considering 

transmission capacity constraints (Chen and Chen, 2001). A 

salient feature of the DSM is to begin with an initial feasible 

solution and search for the optimal solution along a trajectory 

that maintains a feasible solution at all time. The advantage of 

direct search procedure is to handle several inequality con-

straints without introducing any multipliers. Furthermore, it can 

solve problems with derivatives unavailable or the fuel cost 

functions being much more complicated. Results show that the 

algorithm is an efficient approach for determining the optimal 

generation schedules. However, there are many problems in the 

solution process by the standard DSM for solving the NED 

problem. Like many local search techniques, the standard DSM 

is more sensitive to the initial starting points and has a number 

of parameters that must be selected carefully. Like other sto-

chastic searching techniques, the main problem of the DSM is 

that it gets easily trapped in a local optimal solution, especially 

while handling large-scale NED problems with more local 

optima and heavier constraints. Therefore, the standard DSM 

still need further research and development to improve its 

performance and to obtain the robustness. 

A good initial solution could enhance the possibility to ob-

tain a better solution. However, it is easily trapped in local 

minima since, with a single initial solution, it is hardly to ex-

plore the search space where the global optimal solution exists. 

To enhance the solution quality of DSM, the stochastic tech-

nique is applied for the standard DSM to generate a population 

of NP initial candidate solutions at random and finds solution in 

parallel using direct search procedure. To further weaken the 

dependence of finding the global optimal solution on the initial 

starting solutions, the selection of calculation step S in the direct 

search procedure is also vital to the success of DSM to find the 

global optimal solution. In the previous work (Chen, 2006), the 

EDSM with large initial calculation step S1 and small reduced 

factor K is usually commended to enhance its search capacity. 

The attractive feature of the EDSM is to reduce the step size 

gradually by using the multi-level convergence strategy to in-

crease the possibility of occurrence of escaping from local 

optimal solution. The numerical results show the EDSM can 

identify a near global region and perform a local search rapidly. 

The efficient approach makes it an attractive method, and this 

methodology is very suitable for assessing costs of NED prob-

lem. 

 

3. Conventional hybrid DPSO-EDSM algorithm and its im-

provement  

Usually, the stochastic search technique can identify a near 

global region but slows in a finely tuning local search. In con-

trast, the local searching technique can climb hills rapidly but is 

easily trapped in local minima. Development of hybrid 

DPSO-EDSM algorithm is necessary to improve the solution 

quality and performance for the large-scale NED problem. In 

general, the DPSO algorithm was responsible for “global ex-

ploration” and the EDSM algorithm was used to “local opti-

mization” with the current solutions of the DPSO as the starting 

points. The outline of the conventional DPSO-EDSM algorithm 

is shown in the flowchart in Fig. 5. However, the conventional 

hybrid DPSO-EDSM has premature convergence problem if a 

promising area where the global optimum is residing is not 

identified at the end of the optimization process. Like DPSO 

algorithm, the EDSM may also get easily trapped in a local 

optimal solution because the initial starting points obtained by 

the DPSO are too similar. Enhancement of solution quality 

becomes major concern to solve the large-scale NED problem. 

Besides, it is obvious that the major portion of computing time 

is spent in performing the DPSO technique to explore the search 

space where the global optimal solution exists. Improvement of 

solution performance becomes another concern to solve the 

large-scale NED problem. Therefore, the conventional 

DPSO-EDSM algorithm still needs further research and de-

velopment to improve its performance and to obtain the ro-

bustness. 

To enhance its search capacity, a modified DPSO-EDSM 

algorithm is developed to improve the solution quality and 

performance for the large-scale NED problem. In this study, the 

DPSO algorithm is only used to generate high quality initial 

starting points and the EDSM algorithm is responsible for both 

global exploration and local optimization. It should be noted 

that the advantage of the EDSM algorithm is to begin with a 

coarse convergence step to enhance the global exploration 

ability and end with a refined convergence step to enable quick 

convergence. To enhance the solution quality of EDSM, a larger 

population size NP is desired to increase the possibility of 

finding the global optimal solution for the large-scale NED 

problem. However, the main problem of the EDSM is more 

sensitive to the initial random starting points and it is hardly to 

explore the search space where the global optimal solution 

exists. To identify a near global region, the DPSO with a fewer 

iterations required is used to increase the possibility of gener-
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ating high quality initial solutions for the EDSM. Like me-

ta-heuristic approaches, the parallel searching mechanism in-

corporated in DSM algorithm is also used to enhance its search 

capacity, leads to a higher probability of obtaining the global 

optimal solution. The outline of the proposed modified 

DPSO*-EDSM algorithm is shown in the flowchart in Fig. 6. 

 

IV. IMPLEMENTATION OF MODIFIED DPSO-EDSM 

ALGORITHM FOR NED PROBLEMS 

 

1. Improved DSM with a parallel searching mechanism 

Like meta-heuristic approaches, the parallel searching 

mechanism incorporated in standard DSM algorithm is used to 

enhance its search capacity, leads to a higher probability of 

obtaining the global optimal solution. Let rand be uniform 

random value in the range [0,1]. The initial power outputs of 

1N  generating units without violating (5) are generated 

randomly by  

   

)( minmaxmin

iiii PPrandPP                                                        (13) 

 

To satisfy the power balance equation, a dependent generat-

ing unit is arbitrarily selected among the committed N  units 

and the output of the dependent generating unit 
dP  is deter-

mined by 
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Whereas
dP can be calculated directly from the quadratic 

equation as shown in below. 
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 If 
dP with violating (5), a repairing strategy is applied to pick 

one unit at random to increase (or decrease) its output by the 

random or predefined step (e.g., 10 MW), one by one, until it 

can satisfy all the constraints. 

 

2. Improved DSM with a high quality initial solutions 

mechanism 

To enhance the solution quality of DSM, a larger population 

size of NP initial candidate solutions is desired to increase the 

possibility of finding the global optimal solution for the 

large-scale NED problem. To further explore the search space 

where the global optimal solution exists, the DPSO with a fewer 

iterations required, described in Section 3.2, is applied to gen-

erate high quality initial solutions for the EDSM. The process of 

the DPSO* can be summarized as follows: 

 

Step 1:  Establish the DPSO* parameters. 

Set up the set of parameters of DPSO*, such as number 

of particles NP, weighting factors c0, c1, c2, c3max, 

c3min, and predefined number of iterations (i.e. it-

er0=10~300). 

Step 2: Create an initial population of particles randomly. 

The stochastic technique, described in Section 4.1, is 

applied to generate an initial population of particles 

randomly. 

Step 3: Evaluate the value of the fitness function for each par-

ticle. 

            Calculate the value of fitness function for each particle. 

The fitness function is an index to evaluate the fitness of 

particles. Equation (1) shows the fitness function of the 

NED problem. 

Step 4: Record and update the Pbest and Gbest. 

The two best values are recorded in the searching pro-

cess. Each particle keeps track of its coordinate in the 

solution space that is associated with the best solution it 

has reached so far. This value is recorded as Pbest. An-

other best value to be recorded is Gbest, which is the 

overall best value obtained so far by any particle. 

Step 5: Update the velocity and position of the particles. 

Eqs. (8), (10)-(12) are applied to update the velocity and 

position of particles. The velocity of a particle repre-

sents a movement of the generation of the generators. 

The position of a particle is the generation of the gen-

erators. It represents a movement of a particle. The new 

positions of the particles are forced to satisfy the unit’s 

generation limit constraint given by (5) and other con-

straints if they exist.  

Step 6:  Check the end condition. 

If the predefined number of iterations (iter0) is reached, 

invoke the EDSM algorithm with the current solutions 

of the DPSO* as the starting points to further explore the 

final optimal solution, otherwise, repeat steps 3-5 until 

the end conditions are satisfied. 

 

3. Direct search procedure for candidates 

Exploration on initialization begins with finding the best di-

rection for improvement. One-at-a-time search is an effective 

strategy of direct search procedure for handling coupling con-

straints effectively without introducing any multipliers. At each 

step of the searching process, only a particular pair of units 
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(assume unit x and unit y, y≠x) is selected to achieve the most 

reduction in the total fuel cost TF . Once all units are examined 

and no improvement in the total operating cost is found, the 

search process is terminated. The computation steps of the 

enhanced direct search procedure are shown as follows:  

 

Step 1: Units, without violating the maximum or minimum 

generation limits, are to increase or decrease their 

outputs by the predefined step S for calculating their 

incremental costs (IC) and decrement costs (DC). This 

is shown as follows: 

 

S

PFSPF
IC iiii

i

)()( 
     for       i=1, 2, …, N      (16) 

S

SPFPF
DC

iiii
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subject to  

 

   max

ii PSP       and      min

ii PSP                                (18)   

 

Step 2: All units are examined to check if there is any im-

provement. If no more improvement can be achieved, 

then stop; otherwise, go to step 3. 

Step 3: An independent unit with minimum incremental cost ICx 

(assume unit x) is chosen to increase its output by the 

predefined step S, and then, only a dependent unit DCy 

(assume unit y, y≠x) while gaining the most reduction 

in the total operating cost TF , should be selected to 

reduce its output to satisfy the power balance equation.  

Step4: The outputs of this particular pair of units will be ad-

justed again by the predetermined step S if they do not 

violate the generation limits, and only the incremental 

cost of unit x and the decrement cost of unit y need to 

be recalculated. 

Step 6:  Go to step 2. 

 

4. Overall hybrid DPSO*-EDSM solution procedure 

The overall procedure of the proposed DPSO*-EDSM algo-

rithm can be stated as follows: 

 

Step 1:  Read system data. 

Step 2:  Set the proper values of initial step size S1 and reduced 

factor K. 

Step 3:  Initialize a population of candidate solutions at random. 

Step 4: Re-initialize this population of candidate solutions by 

using DPSO* with a fewer iterations required (iter0). 

Step 5:  S = S1 

Step 6:  Perform direct search procedure for candidates.  

Step 7:  Is S greater than predefined resolutionε?  

Yes, S= S/K, go to step 6; otherwise, go to step 8. 

Step 8:  Print results. 

V. NUMERICAL EXPERIMENTS 

To verify the feasibility and effectiveness of the proposed 

hybrid algorithm, numerical studies have been performed for 

the several test systems, where valve-point effects are consid-

ered. All the computation is performed on a PC Pentium (R) 

Dual CPU 2.00 GHz computer with 1.0GRAM size, and several 

computer programs were developed in FORTRAN:  

 

PSOIW: Particle swarm optimization with inertia weight 

DPSO: Diversity based particle swarm optimization  

EDSM: Enhanced direct search method  

DPSO-EDSM: DPSO with local optimization using the EDSM 

DPSO*-EDSM: EDSM with high quality initial solutions ob-

tained by the DPSO* 

 

After testing and evaluating different parameter combinations, 

parameters of the PSO-IW, DPSO, EDSM, DPSO-EDSM and 

DPSO*-EDSM algorithms used in the three test systems are 

listed in Table 1 for clarity. The studied cases are stated in detail 

as follows: 

        

1. Example 1: Test for a 13-unit system 

In the first example, a system with thirteen generating units 

considering the valve-point effects is studied. The system unit 

data is given in Ref. (Victoire and Jeyakumar, 2004) and the 

total load demand is 2520MW. Network losses are neglected in 

the tests for comparison. Table 2 depicts the numerical results of 

the various methods. The best result obtained by the proposed 

DPSO*-EDSM is compared with those of the HSS in (Bhagwan 

Das and Patvardhan,1999), the ESA in (Lu et al., 2008), the 

EP-SQP in (Victoire and Jeyakumar, 2004) and the PSO-SQP in 

(Victoire and Jeyakumar, 2004). This table reveals that the 

proposed approach can obtain a higher quality solution than 

many existing techniques. It shows that the best cost of the 

PSO-SQP is $24261.05 and that of proposed DPSO*-EDSM 

algorithm is $24169.92. Details of the best solutions obtained 

by the proposed DPSO*-EDSM algorithm is shown in the sixth 

column of Table 2. To further examine the merits of the 

DPSO*-EDSM algorithm, Table 3 shows the dispatch results of 

the PSOIW, DPSO, EDSM, DPSO-EDSM and DPSO*-EDSM 

algorithms for 30 trial runs. The simulation results reveal that 

the DPSO*-EDSM has provided better solution than the other 

approaches. Also, the efficiency of the proposed hybrid algo-

rithm has been demonstrated in the test case. To investigate 

effects of initial trail solutions on the final results, different 

initial solutions obtained by DPSO* were given to the EDSM 

approach for comparison. Fig. 7 shows the variation of the 

average cost of 30 runs versus a series of different iter0 ranging 

from 0 to 60 in steps of 5 iterations. Although the average cost is 

oscillated as iter0 increases, the quality of the solution is im-

proved with various iter0. Fig. 8 shows the solution obtained 

from EDSM, DPSO-EDSM and DPSO*-EDSM depends on the 

population size. This figure reveals that the results obtained by 

the proposed DPSO*-EDSM is very close to that of 

DPSO-EDSM and finds a better solution than EDSM in the 
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studied case. The results show that the proposed DPSO*-EDSM 

provides an accurate algorithm to tackle efficiently the difficult 

NED problem. 

 

2. Example 2: Test for a 40-unit system 

In the second example, a system with forty generating units is 

studied to test the solution quality and performance of the 

proposed hybrid algorithm. The system unit data is shown in 

Ref. (Sinha et al., 2003) and the total load demand is 10500 MW. 

The corresponding costs of the obtained best solution from 

DPSO*-EDSM are compared with those of the previous re-

searches in Table 4, such as MFEP (Sinha et al., 2003), IFEP 

(Sinha et al., 2003), PSO-SQP (Victoire and Jeyakumar, 2004), 

GA-PS-SQP (Alsumait et al., 2010), HCPSO (Cai et al., 2012), 

HCPSO-SQP (Cai et al., 2012), SOMA (Coelho and Mariani, 

2010) and CE-SQP (Subathra et al., 2015). From these results, 

the proposed hybrid algorithm can find a better solution 

($121412.6) than many existing techniques, and has clearly 

shown the superiority to the previous researches in terms of 

minimum cost as well as average cost. To illustrate the good 

convergence property of the proposed algorithm, Table 5 gives 

a comparison of operation costs during each convergence level. 

Details of the best solutions obtained by the proposed 

DPSO*-EDSM algorithm is shown in the Table 6. To demon-

strate the need for integrating the EDSM with the DPSO*, Table 

7 shows the best cost, average cost, and worst cost achieved for 

30 trial runs using various heuristic algorithms. From the results, 

the basic PSOIW has premature convergence problem and easy 

to be trapped in local optima (average cost: $121885.6). Using 

an intelligent judgment mechanism, the proposed DPSO can 

find a better solution (average cost: $121485.8) than the basic 

PSOIW technique. However, the DPSO makes no guarantee 

that the solutions are optimal or even close to the optimal solu-

tion. Similar to conventional PSO algorithm in optimization, the 

main problem of the DPSO-EDSM is that it also gets trapped in 

a local optimal solution (average cost: $121431.6) since a 

promising area where the global optimal is residing is not 

identified at the end of the optimization process. It is seen that 

the satisfactory solution (average cost: $121418.0) achieved by 

EDSM with better performance. However, only the near global 

optimal solution can be obtained by the EDSM approach. As 

shown in the sixth lows of Table 7, the final results (average cost: 

$121412.8) of DPSO*-EDSM with high quality initial starting 

points are better than that of EDSM. This test case study con-

verges within 1 sec for each run when the value of iter0 is 

chosen to be 20. 

To investigate effects of initial trail solutions on the final 

results, different initial solutions obtained by DPSO* and 

PSOIW* were given to the EDSM approach for comparison. 

Fig. 9 shows the variation of the average cost of 30 runs versus a 

series of different iter0 ranging from 0 to 300 iterations. The 

results show that the DPSO* performs much better than 

PSOIW* as an optimizer for initialization and the superiority of 

the DPSO*-EDSM algorithm over PSOIW*-EDSM can also be 

noticed. Although multiple local minimum solutions exist in this 

studied case, the proposed DPSO*-EDSM can still find a better 

solution than EDSM when the value of iter0 is less than 150. It 

can also be seen that the average fuel cost of 30 runs is lowest 

one in this figure when the value of iter0 is chosen to be 20. But 

in certain cases, the average cost may be oscillated as iter0 

increases. To improve the final solution, an iterative process 

with different iter0 ranging from 0 to 300 in steps of 10 itera-

tions can be placed outside the DPSO*-EDSM loop. In this 

study, the proposed hybrid algorithm is terminated if the best 

cost is unchanged within three consecutive iterations. The 

quality of the solution is found with various iter0 as illustrated in 

Table 8 when the value of NP is chosen to be 50 in a typical run. 

Note that the best solution is always saved among the obtained 

solutions during iterative process. Fig. 10 shows the solution 

obtained from iterative DPSO*-EDSM depends on the popula-

tion size. Increasing of population size will provide a better 

solution but takes longer computing time. Note that the 

DPSO*-EDSM method still finds a satisfactory solution (av-

erage cost: $121413.6) even with a very small population size 

(NP=40). This test case study converges within 1.67 sec for 

each run when the value of NP is chosen to be 100. 

 

3. Example 3: Test for a 80-unit system 

In the last example, the simulation includes test runs for the 

large-scale system to demonstrate the robustness and effec-

tiveness of the proposed DPSO*-EDSM algorithm. The 80-unit 

system is created simply by expanding example 2. The degree of 

complexity of the NED problem is related to the system-size. 

The larger system-size increases the non-linearity as well as the 

number of equality and inequality constraints in the NED 

problem. There are many local optimal solutions for the dis-

patch problem and the problem is well suitable for testing and 

validating the developed hybrid algorithm. The results obtained 

by the proposed DPSO*-EDSM are compared with those ob-

tained by using previously published methods, such as CSO 

(Selvakumar and Thanushkodi, 2009), PSO (Selvakumar and 

Thanushkodi, 2009), CSE (Selvakumar and Thanushkodi, 2009) 

and CE-SQP (Subathra et al., 2015). Table 9 depicts the nu-

merical results of various methods. This table reveals that the 

proposed hybrid algorithm outperforms other existing methods. 

It shows that the best cost of the CE-SQP is $242883.04 and that 

of proposed DPSO*-EDSM algorithm is $242794.7, which is 

the minimum cost found so far. Details of the best solutions 

obtained by the proposed DPSO*-EDSM algorithm is shown in 

the Table 10. Fig. 11 shows the variation of the average cost of 

30 runs versus a series of different iter0 ranging from 0 to 300 

iterations. It can also be seen that the average fuel cost of 30 

runs is lowest one in this figure when the value of iter0 is chosen 

to be 100. To further examine the merits of the DPSO*-EDSM 

algorithm, Table 11 depicts the numerical results of various 

methods. From the results, the superiority of the DPSO*-EDSM 

algorithm over basic PSOIW, DPSO, EDSM and DPSO-EDSM 

can be noticed. From these results, although multiple local 

minimum solutions exist in this studied case, the proposed 

DPSO*-EDSM can still find a better solution than EDSM, by 
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0.02 percent equivalent to 49.8 (refer to Table 11). Furthermore, 

the solution reached by the proposed DPSO*-EDSM is also 

better than DPSO-EDSM, by 0.006 percent equivalent to 14.8. 

Table 12 shows the solution of DPSO*-EDSM after thirty runs 

under different particle numbers. From this result, the average 

cost of thirty runs decreased when the particle number increased. 

It is also observed that the total operation cost is not sensitive to 

the particle number. In fact, several different cases were studied 

and the results show that the final results of DPSO*-EDSM are 

better than those of PSOIW, DPSO, EDSM and DPSO-EDSM. 

The encouraging simulation results clearly show that the pro-

posed DPSO*-EDSM is capable of obtaining higher quality 

solutions to tackle the difficult NED problems. The efficient 

approach also makes it an attractive method for the solution of 

the large-scale NED problem in these test cases. The suitable-

ness of the algorithm presented in this paper to the solution of 

the optimal NED problem is, thus, confirmed. 

VI. CONCLUSIONS 

This paper presents a modified hybrid algorithm based on a 

combination of DPSO and EDSM to solve the NED problems 

with valve-point effects. Adding the Pbestap item with a diver-

sity based judgment mechanism, the proposed DPSO algorithm 

can give a good direction to generate high quality initial solu-

tions for the EDSM. The EDSM incorporates the parallel 

searching mechanism of evaluation programming into the direct 

search procedure to enhance its search capacity about global 

exploration and local optimization. The global searching capa-

bility has been improved significantly by the proposed heuristic 

mechanism in the three test systems. It is observed that ob-

taining the global optimal solution for the NED problem is 

possible by using the proposed hybrid DPSO*-EDSM algo-

rithm. Numerical experiments also demonstrate that the pro-

posed algorithm is more practical and valid than many existing 

techniques for the solution of the large-scale NED problem. 
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Parameter Example 1: 

13-unit system  

Example 2: 

40-unit system  

Example 3: 

80-unit system 

 

PSOIW 

NP=100; 

 c1=2.0; c2=2.0; 

.90max  ; 4.0min  ; 

itermax=1000 

NP=300;  

c1=2.0; c2=2.0; 

.90max  ; 4.0min  ; 

itermax=2000 

NP=600;  

c1=2.0; c2=2.0; 

.90max  ; 4.0min  ; 

itermax=2000 

 

 

DPSO 

NP=100;  

c0=0.3; c1=2.5; c2=0.8; 

c3max=0.4; c3min=0.01; iter-

max=1000 

 

NP=300;  

c0=0.3; c1=2.5; c2=0.8; 

c3max=0.4; c3min=0.01; iter-

max=2000 

 

NP=600;  

c0=0.3; c1=2.5; c2=0.8; 

c3max=0.4; c3min=0.01; iter-

max=2000 

 

EDSM NP=100; S1=200;  

K=1.2;ε=0.001 

NP=300; S1=200;  

K=1.2; ε=0.001 

NP=600; S1=200;  

K=1.2;ε=0.001 

 

DPSO-EDSM 

NP=100;  

c0=0.3; c1=2.5; c2=0.8; 

c3max=0.4; c3min=0.01; iter-

max=1000; 

S1=200; K=1.2;ε=0.001 

NP=300;  

c0=0.3; c1=2.5; c2=0.8; 

c3max=0.4; c3min=0.01; iter-

max=2000; 

S1=200; K=1.2;ε=0.001 

NP=600;  

c0=0.3; c1=2.5; c2=0.8; 

c3max=0.4; c3min=0.01; iter-

max=2000 

S1=200; K=1.2;ε=0.001 

 

DPSO*-EDSM 

NP=100; c0=0.3; c1=2.5; 

c2=0.8; iter0=10; 

c3max=0.4; c3min=0.01; S1=200; 

K=1.2;ε=0.001 

NP=300; c0=0.3; c1=2.5; 

c2=0.8; iter0=20; 

c3max=0.4; c3min=0.01; S1=200; 

K=1.2;ε=0.001 

NP=600; c0=0.3; c1=2.5; 

c2=0.8; iter0=100; 

c3max=0.4; c3min=0.01;  

S1=200; K=1.2; ε=0.001 

 

 

 

Table 2. Comparison of dispatch results of each method for the system Example 1. 

 

Unit HSS ESA EP-SQP PSO-SQP DPSO*-EDSM 

1 628.23 628.3068 628.3136 628.3205 628.3185 

2 299.22 298.8529 299.1715 299.0524 299.1990 

3 299.17 298.7195 299.0474 298.9681 299.1990 

4 159.12 159.7211 159.6399 159.4680 159.7330 

5 159.95 159.5390 159.6560 159.1429 159.7330 

6 158.85 159.6340 158.4831 159.2724 159.7328 

7 157.26 159.0156 159.6749 159.5371 159.7328 

8 159.93 159.6087 159.7265 158.8522 159.7329 

9 159.86 159.0345 159.6653 159.7845 159.7329 

10 110.78  76.3879 114.0334 110.9618  77.3996 

11 75.00  77.1473 75.0000 75.0000  77.3996 

12 60.00 92.2443 60.0000 60.0000 92.3998 

13 92.62 91.7883 87.5884 91.6401 87.6868 

Cost ($) 24275.71 24174.17 24266.44 24261.05 24169.92 
 

 

 

Table 3. Comparison of results after 30 trials for the system Example 1. 

 

Methods Best cost 

 ($) 

Average cost  

($) 

Worse cost 

 ($) 

Avg. Time 

(s) 

PSOIW  24287.91 24451.40 24643.13 0.458 

DPSO 24171.29 24195.21 24242.83 0.605 

EDSM 24169.92 24175.83 24216.21 0.092 

DPSO-EDSM  24169.92 24170.62 24174.09 0.687 

DPSO*-EDSM 24169.92 24170.49 24174.09 0.107 

 

 
Table 4. Comparison of dispatch results of each method for the system Example 2. 
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Methods Best cost 

 ($) 

Average cost  

($) 

Worse cost 

 ($) 

MFEP  122647.57 123489.74 --- 

IFEP  122624.35 123382.00 125740.63 

PSO-SQP  122094.67 122245.25 --- 

GA-PS-SQP  121458 122039 --- 

HCPSO  121865.23 122100.74 --- 

HCPSO-SQP 121458.54 122028.16 --- 

SOMA  121418.79 121449.88 --- 

CE-SQP  121412.88 121423.65 --- 

DPSO*-EDSM 121412.6 121412.8 121414.7 
 

 

Table 5. Comparison of costs under various S in the 40-unit system. 

 

Convergence Cost  ($) Convergence Cost  ($) Convergence Cost  ($) 

Initialization 147941.1 S22=4.347 MW 121839.4 S45=0.065 MW 121422.0 

Re-initialization 135214.2 S23=3.622 MW 121786.8 S46=0.054 MW 121420.2 

S1=200.000 MW 124180.8 S24=3.018 MW 121724.4 S47=0.045 MW 121418.6 

S2=166.666 MW 124180.8 S25=2.515 MW 121647.6 S48=0.037MW 121418.1 

S3=138.888 MW 124180.8 S26=2.096 MW 121639.9 S49=0.031 MW 121417.0 

S4=115.740 MW 124180.8 S27=1.747 MW 121618.3 S50=0.026 MW 121416.2 

S5=96.450 MW 124176.0 S28=1.455 MW 121601.0 S51=0.021 MW 121415.8 

S6=80.375 MW 123729.2 S29=1.213 MW 121569.5 S52=0.018 MW 121415.0 

S7=66.979 MW 123729.2 S30=1.011 MW 121542.9 S53=0.015 MW 121414.7 

S8=55.816 MW 123409.5 S31=0.842 MW 121522.8 S54=0.012 MW 121414.4 

S9=46.513 MW 123032.8 S32=0.702 MW 121491.2 S55=0.010 MW 121414.0 

S10=38.761 MW 123032.8 S33=0.585 MW 121476.0 S56=0.0088 MW 121413.8 

S11=32.301 MW 122801.5 S34=0.487MW 121468.2 S57=0.0073 MW 121413.6 

S12=26.917 MW 122801.5 S35=0.406 MW 121461.5 S58=0.0061 MW 121413.4 

S13=22.431 MW 122639.4 S36=0.338 MW 121453.9 S59=0.0051MW 121413.2 

S14=18.692 MW 122625.9 S37=0.282 MW 121449.5 S60=0.0042 MW 121413.1 

S15=15.577 MW 122435.4 S38=0.235 MW 121444.7 S61=0.0035 MW 121413.0 

S16=12.981 MW 122373.4 S39=0.195 MW 121435.0 S62=0.0029 MW 121413.0 

S17=10.817 MW 122323.1 S40=0.163 MW 121433.1 S63=0.0024 MW 121412.9 

S18=9.014 MW 122296.0 S41=0.136 MW 121429.9 S64=0.0020 MW 121412.8 

S19=7.512 MW 122106.6 S42=0.113 MW 121427.9 S65=0.0017 MW 121412.8 

S20=6.260 MW 121976.2 S43=0.094 MW 121425.1 S66=0.0014 MW 121412.7 

S21=5.216 MW 121924.6 S44=0.078 MW 121423.6 S67=0.0011 MW 121412.6 

 

 
Table 6. Best dispatch results for the 40-unit system. 

 

Unit  No. 
iP (MW) Unit  No. 

iP (MW) Unit  No. 
iP (MW) Unit  No. 

iP (MW) 

1 110.799600 11 94.000210 21 523.279900 31 189.999900 

2 110.799600 12 94.000120 22 523.279800 32 189.999800 

3 97.400350 13 214.759200 23 523.279100 33 189.999200 

4 179.733600 14 394.279700 24 523.280000 34 164.799500 

5 87.799680 15 394.278700 25 523.279000 35 199.999800 

6 139.999200 16 394.279600 26 523.279100 36 194.396800 

7 259.600200 17 489.278900 27 10.000210 37 109.999700 

8 284.599300 18 489.278900 28 10.000630 38 110.000000 

9 284.599300 19 511.279800 29 10.000220 39 109.999800 

10 130.000600 20 511.278900 30 87.800590 40 511.278900 
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Table 7. Comparison of results after 30 trials for the system Example 2. 

 

Methods Best cost 

 ($) 

Average cost  

($) 

Worse cost 

 ($) 

Avg. Time 

(s) 

PSOIW  121745.5 121885.6 122213.5 8.13 

DPSO 121417.6 121485.8 121694.6 10.91 

EDSM 121412.6 121418.0 121440.1 0.80 

DPSO-EDSM  121412.6 121431.6 121502.9 11.67 

DPSO*-EDSM 121412.6 121412.8 121414.7 1.03 

 

Table 8. Comparison of results with various iter0 in the 40-unit system . 

 

Convergence Initialization iter0=0 iter0=10 iter0=20 iter0=30 iter0=40 iter0=50 

Best cost ($) 134956.1 121467.3 121461.8 121414.9 121412.6 121412.6 121412.6 

 

Table 9. Comparison of dispatch results of each method for the system Example 3. 

 

Methods Best cost 

 ($) 

Average cost  

($) 

Worse cost 

 ($) 

CSO  243195.38 243546.63 --- 

PSO  244188.35 246375.87 --- 

SCA  250864.05 254579.79 --- 

CE-SQP  242883.04 242945.25 --- 

DPSO*-EDSM 242794.7 242813.9 242864.9 
 

 

Table 10. Best dispatch results for the 80-unit system. 

 
Unit  No. 

iP (MW) Unit  No. 
iP (MW) Unit  No. 

iP (MW) Unit  No. 
iP (MW) 

1 110.799820 21 523.279372 41 110.799830 61 523.279362 

2 110.799825 22 523.279363 42 110.799830 62 523.279365 

3 97.399915 23 523.279374 43 97.399915 63 523.279372 

4 179.733102 24 523.279376 44 179.733100 64 523.279374 

5 87.799903 25 523.279363 45 87.799905 65 523.279374 

6 140.000000 26 523.279374 46 140.000000 66 523.279365 

7 259.599659 27 10.000007 47 259.599659 67 10.000004 

8 284.599647 28 10.000005 48 284.599647 68 10.000000 

9 284.599647 29 10.000014 49 284.599647 69 10.000002 

10 130.000000 30 87.799903 50 130.000000 70 87.799905 

11 168.799817 31 189.999986 51 168.799822 71 190.000000 

12 94.000002 32 189.999995 52 94.000008 72 189.999999 

13 214.759788 33 189.999996 53 214.759787 73 190.000000 

14 394.279369 34 164.799820 54 394.279372 74 164.799820 

15 394.279370 35 199.356192 55 394.279360 75 199.999992 

16 394.279369 36 164.799832 56 304.519569 76 164.799832 

17 489.279372 37 109.999996 57 489.279375 77 109.999986 

18 489.279373 38 109.999995 58 489.279362 78 110.000000 

19 511.279365 39 109.999997 59 511.279361 79 109.999914 

20 511.279370 40 511.279373 60 511.279365 80 511.279373 

 

 

 

 

 

 
Table 11. Comparison of results after 30 trials for the system Example 3. 
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Methods Best cost 

 ($) 

Average cost  

($) 

Worse cost 

 ($) 

Avg. Time 

(s) 

PSOIW  243923.1 244206.5 245044.5 32.03 

DPSO 242865.6 243171.2 243865.6 44.10 

EDSM 242844.5 242926.3 243014.7 4.67 

DPSO-EDSM  242809.5 242903.0 243013.9 49.46 

DPSO*-EDSM 242794.7 242813.9 242864.9 7.60 

 

 

 

Table 12.Comparison of results under various NP in the Example 3 by using DPSO*-EDSM algorithm. 

Particle numbers 

(NP) 

Best cost 

 ($) 

Average cost  

($) 

Avg. Time 

(s) 

100 242812.6 242836.5 1.31 

200 242801.5 242836.2 2.67 

300 242798.4 242827.8 4.00 

400 242794.7 242819.6 5.27 

500 242794.7 242816.5 6.47 

600 242794.7 242813.9 7.60 

700 242794.7 242813.7 9.10 

800 242794.7 242813.5 10.30 

900 242794.7 242813.4 11.53 
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Fig. 1. N thermal units committed to serve a load of PD 
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Fig. 2. Fuel cost curve of units with valve-point effects 
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Fig. 3.  Depiction of the velocity and position updates in the traditional PSO 
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Fig. 4.  Depiction of the velocity and position updates in the improved PSO 
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 Initialize a population of particles 
(NP) at random

Update the velocity and position of 
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local optimization
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END
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function for each particle

 
 

Fig. 5.  Simplified flow chart for the conventional hybrid DPSO-EDSM algorithm. 
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Fig. 6.  Simplified flow chart for the proposed hybrid DPSO*-EDSM algorithm. 
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Fig. 7.  Comparison of average costs under various iter0 for the system Example 1. 
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Fig. 8.  Comparison of average costs under various NP for the system Example 1. 

 

 

Fig. 9.   Comparison of average costs under various iter0 of the two PSO strategies for the system Example 2.  
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Fig. 10.  Comparison of average costs under various NP for the system Example 2. 

 

242800

242820

242840

242860

242880

242900

242920

0 20 40 150 250

iter0

A
v

er
ag

e 
co

st
 (

$
)

 

Fig. 11.  Comparison of average costs under various iter0 for the system Example 3. 

 

 

 

 

 

 


