PRE-SPAWNING SNOUT-GRIPPING BEHAVIORS
OF GYMNOThORAX PICTUS
AND GYMNOThORAX THYRSOIDEUS
(MURAENIDAE) IN CAPTIVITY

Kar-Hoe Loh¹ and Hong-Ming Chen²,³

Key words: Anguilliformes, moray eel, snout gripping, pre-spawning behavior, courtship.

ABSTRACT

The main focus of this study has been on the distinctive pre-spawning snout-gripping behaviors and mate choice of two moray species (Gymnothorax pictus and G. thyrsioideus). The behavior of snout-gripping means that the male grips the female's snout with its jaws. It is the most distinctive behavior to confirm the success of mating pair formation naturally and was rarely described on moray eels or other coral reef fishes. The reproductive behaviors of the two moray species were also first observed and photographed in the laboratory aquaria. Over 22 reproductive events including 9 spawning events by 28 adult individuals of G. pictus were recorded. Eight sequential behaviors were recorded in the successful spawning events of G. pictus searching, courting, inviting, snout-gripping, pushing toward the water surface, turning around, spawning, separating and settling to the bottom. G. thyrsioideus also exhibited similar pre-spawning behaviors as G. pictus, but showed more aggressive behaviors between the males than G. pictus. Courtships and mating affairs occurred about 23 times by 32 adult individuals of G. thyrsioideus, but without spawning. Both species mated mainly between a female and a male at night (8:00PM-2:00AM). It only took a shorter time for G. pictus to go from snout-gripping to spawning (3-7 seconds), but a longer time for G. thyrsioideus to go from snout-gripping to separating (35-43 seconds).

I. INTRODUCTION

Any behavior is distinctive if it is performed without being based upon prior experience and therefore is an expression of innate biological factors, it was different from the imprinting (Wiens and Lorenz, 1952; Eckhard, 1958). The behaviors of Anguilliformes fishes are wonderful; they have a special extension body and raptorial jaws (Mehta and Wainwright, 2007; Tomohiro et al., 2015). Some special behaviors that were observed during feeding sequences of muraenid eels include: knot, rotate, shake and strike (Miller, 1987; 1989).

Moray eels are extremely secretive, wary of divers, and may spawn infrequently (Kris 2003). The reproductive behavior and spawning behavior of moray eels were less documented and confirmed visually (Adler, 1975; Thresher, 1984). Apparent reproductive behaviors were observed in the field only in four occasions (Brock, 1972, Moyer and Zaiser, 1982; Ferraris, 1985) (Table 1). These observations in the order presented, represent a probable spawning sequence. That is, the eels approach each other, rise up face to face, entwine their bodies, return to the substrate with bodies still entwined and after some time, spawn with abdomens pressed together.

The reproductive behavior of moray eels can be as a pair in some species such as in Gymnothorax javanicus. It was observed that this species would be lying on the bottom and entwined around one another, but no visible gamete released was apparent (Brock, 1972). Moyer and Zaiser (1982) reported that a pair of Gymnothorax kidako was similarly entwined, and one turned to wrap itself around the other. On the contrary, Urotrygonias nectarus just prior to spawning was seen with three males grasping the female just behind the head and within a few minutes the group dispersed (Moyer and Zaiser, 1982). Ferraris (1985) reported that a group of spawning G. herrei in the Philippines showed seven males holding onto a single female. The mass of bodies then began to rise above the substrate. This activity was apparently initiated by the female, whose head extended slightly above those of the males.

In the present study, due to the paucity of information on the reproductive behavior of moray eels, we reared peppered morays
Table 1. Comparison of the reproductive behaviors of six moray species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Male vs female</th>
<th>Behavior</th>
<th>Gamete observed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnothorax herrei (in the field)</td>
<td>a group</td>
<td>Seven males were holding onto a single female. The mass of bodies then began to rise above the substrate</td>
<td>No</td>
<td>Ferraris (1985)</td>
</tr>
<tr>
<td>G. javanicus (in the field)</td>
<td>a pair</td>
<td>A pair was observed lying on the bottom and entwined around one another</td>
<td>No visible gamete release was apparent</td>
<td>Brock (1972)</td>
</tr>
<tr>
<td>G. kidako (in the field)</td>
<td>a pair</td>
<td>Similarly entwined, and one turned to wrap around the other</td>
<td>No</td>
<td>Moyer & Zaiser (1982)</td>
</tr>
<tr>
<td>G. pictus (in captivity)</td>
<td>a pair</td>
<td>Searching, courting, inviting, snout-gripping, rushing toward the water surface, Turning around, spawning, separating</td>
<td>Yes</td>
<td>This study</td>
</tr>
<tr>
<td>G. thyroideus (in captivity)</td>
<td>a pair</td>
<td>Searching, courting, inviting, snout-gripping, rushing toward the water surface, separating</td>
<td>No</td>
<td>This study</td>
</tr>
<tr>
<td>Urotrygonus nectarus (in the field)</td>
<td>a group</td>
<td>Within a few minutes the group dispersed, the pair pressed their abdomens together and then turned sharply apart and separated</td>
<td>Yes, leaving behind a cloud of gametes</td>
<td>Moyer & Zaiser (1982)</td>
</tr>
</tbody>
</table>

Table 2. The events of mating behaviors of the female mature individuals of *Gymnothorax pictus* and *G. thyroideus*, observed in our aquaria.

<table>
<thead>
<tr>
<th>Name of female individual</th>
<th>TL (mm)</th>
<th>WT (g)</th>
<th>Number of mating</th>
<th>Time and date of mating</th>
<th>Duration of snout-gripping (sec)</th>
<th>Position of female snout which male grip on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Left</td>
</tr>
<tr>
<td>Gp 1</td>
<td>563.0</td>
<td>268.8</td>
<td>2</td>
<td>10:30 pm Jul. 5, 2002; 0:30 am Apr. 4, 2003</td>
<td>5.8 ± 0.8</td>
<td>2</td>
</tr>
<tr>
<td>Gp 2</td>
<td>579.0</td>
<td>289.5</td>
<td>1</td>
<td>8:30 pm Apr. 22, 2003</td>
<td>5.4</td>
<td>0</td>
</tr>
<tr>
<td>Gp 3</td>
<td>592.0</td>
<td>401.0</td>
<td>5</td>
<td>1:30 am Apr. 25, 10:00 pm Aug. 25, 2003; 10:30 pm Mar. 18, 10:40 pm May 24, 02:00 am Jun. 21, 2004; 0:30 am Apr. 4, 10:30 pm May 27, 2003; 11:30 pm Mar. 17, 1:30 am Apr. 25, 10:40 pm May 24, 10:30 pm Aug. 22, 2003; 12:00 am Jun. 20, 2004</td>
<td>4.7 ± 0.7</td>
<td>2</td>
</tr>
<tr>
<td>Gp 4</td>
<td>629.0</td>
<td>368.3</td>
<td>5</td>
<td>4:30 pm May 15, 2003; 8:30 pm May 15, 2003; 0:30 pm May 25, 0:40 pm Jun. 24, 2004</td>
<td>3.8 ± 0.4</td>
<td>1</td>
</tr>
<tr>
<td>Gp 5</td>
<td>636.0</td>
<td>390.1</td>
<td>4</td>
<td>12:00 am Oct. 31, 2004</td>
<td>4.3</td>
<td>0</td>
</tr>
<tr>
<td>Gp 6</td>
<td>522.0</td>
<td>257.3</td>
<td>1</td>
<td>10:00 pm Aug. 28, 10:30 pm Nov. 22, 2001; 10:30 pm Jan. 3, 5:30 pm Mar. 29, 5:30 pm Apr. 25, 10:30 pm Jun. 18, 0:30 am Jul. 27, 10:00 pm Oct. 2, 2002</td>
<td>40.1 ± 4.4</td>
<td>5</td>
</tr>
<tr>
<td>Gp 7</td>
<td>590.0</td>
<td>340.9</td>
<td>8</td>
<td>01:00 am Sept. 30, 2001; 5:00 pm May 6, 4:30 pm Jun. 30, 10:30 pm Aug. 19, 2002; 12:00 pm Feb. 15, 4:30 pm Mar. 29, 12:00 pm Feb. 16, 2003</td>
<td>36.8 ± 3.0</td>
<td>2</td>
</tr>
<tr>
<td>Gp 8</td>
<td>667.0</td>
<td>593.2</td>
<td>5</td>
<td>2:30 pm Jul. 16, 4:30 pm Nov. 7, 2002; 10:30 pm Feb. 18, 01:00 am Apr. 26, 2:30 pm Jul. 26, 2003</td>
<td>38.0 ± 7.2</td>
<td>2</td>
</tr>
<tr>
<td>Gt 2</td>
<td>667.0</td>
<td>593.2</td>
<td>5</td>
<td>36.8 ± 3.0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Gt 3</td>
<td>557.0</td>
<td>432.4</td>
<td>3</td>
<td>12:00 pm Feb. 16, 2003</td>
<td>38.0 ± 7.2</td>
<td>2</td>
</tr>
<tr>
<td>Gt 4</td>
<td>623.0</td>
<td>449.7</td>
<td>2</td>
<td>36.8 ± 3.0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Gt 5</td>
<td>585.0</td>
<td>528.3</td>
<td>3</td>
<td>36.8 ± 3.0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Gt 6</td>
<td>602.0</td>
<td>262.6</td>
<td>1</td>
<td>36.8 ± 3.0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Gt 7</td>
<td>597.0</td>
<td>508.7</td>
<td>1</td>
<td>36.8 ± 3.0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Gymnothorax pictus, Gp; *Gymnothorax thyroideus*, Gt; *G. javanicus* and greyface morays (*G. thyroideus*) in the aquaria for natural spawning and described the pre-spawning behaviors. Reproductive behavior by the two species has not yet been observed in either the field or the aquarium.
II. MATERIALS AND METHODS

Two species of muraenid eels, Gymnothorax pictus and G. thyrsoides were used in this study. A total of 28 individuals (eight females, ranging from 416 to 636 mm in TL) of G. pictus were collected by hook, line or hand net fishing along the intertidal zone in southeastern Taiwan (Lanyu and Chengkung). A total of 32 individuals (seven females, ranging from 557 to 667 mm in TL) of G. thyrsoides were bought from Keelung and Nanfangao fish markets in northeastern Taiwan. All individuals were transported to the laboratory aquaria in the Department of Aquaculture, National Taiwan Ocean University. The laboratory included eight 200 liter glass tanks (120*45*60 cm). The controlled temperature was between 24-28°C. Salinity was between 30-33 ppt., and with a photoperiod of 10-hour light and 14-hour darkness. Aquaclear power head aerators were attached to the filter plates for surface water agitation. Crushed coral was used as substrate, and pieces of coral as retreat areas. The feed for the eels comprised primarily of fishes, shrimps, cephalopods, oysters and crabs. The courtship and spawning behavior obser-

![Fig. 1. Eight behavioral patterns involved in the spawning sequence of moray eel, Gymnothorax pictus.](image-url)
vations were recorded using Nikon Cool-pix 4500 Digital camera and Sony DCR-TRV18 DV camera. Sex identification was based on secondary sexual features which includes the shape of the abdomen. The mature females were easily distinguished from the males by their swollen abdomen during the spawning seasons.

III. RESULTS

The Records of Reproductive Behavior of the Two Moray Species:

Gymnothorax pictus (Fig. 1, Table 2)

Over 22 reproductive events including 9 spawning events were recorded by 28 adult individuals of *G. pictus*. Before spawning, the ripe female *G. pictus* swam around the shelter to attract the mature male for courtship. Sometimes, the mature male would attack other male individuals to gain mating with the ripe female. Subsequently, the male started to pursue the female, exhibiting an apparent courting behavior. The male wrapped its body around the head and abdomen of the female, with the female’s head against the male’s head, remaining in the position about 3 sec. The female accepted the male to grip slightly on its snout, and then rushed towards the water surface together. The snout-gripping behavior was terminated by spawning, with the female often turning its abdomen upwards when releasing the eggs.

Based on estimation, the number of eggs that the female moray ovulated was about 7081 ± 546 (n = 9). The fertilized eggs were spherical, buoyant, transparent, and large with an estimated 3.12 ± 0.11 mm (n = 40) in diameter. In this study, we had observed the process of embryonic development within the fertilized eggs. Larvae hatched about 3 to 4 days after fertilization. After hatching, the larvae survived for 5 to 10 days.

Gymnothorax thyroideus (Fig. 2, Table 2)

The fish were usually quiet at night before the reproductive period. Each individual stayed just above the bottom, although the fish occasionally swam slowly in a small school. However, during the spawning period, a general increase in activity occurred. The male moray had strong dominant and attack behaviors; usually it would attack until a serious injury happened to the other individuals excluding the ripe female. The fish usually exhibit courtship behavior during the pre-spawning events. Typically, the male moray would move towards the female acting as a courtship behavior. The male started his courtship behavior toward a selected female by pecking and pushing her swollen abdomen with his snout. The male moray would exhibit an apparent ‘nuzzling’ behavior and then the female would slightly open the mouth to invite the male gripping on its snout.

Therefore, if pairing was successful, the male moray would slightly grip the snout of the female. The pair would then ascend to the surface of the water. Courtships and mating affairs occurred about 23 times by 32 adult individuals of *G. thyroideus*, but without spawning.

We conclude that eight possible behavior patterns were involved in the successful spawning sequence of these two moray eels, *G. pictus* and *G. thyroideus* (Figs. 1-2):

1. Searching: Just before spawning, the female moray which has a swollen abdomen and protruding anus stayed near the bottom. The male hovered around searching and gathered around the female.

2. Courting: The female swam slowly around the aquarium with the male following above and behind. Typically, the male moray started its courtship behavior toward the female by pushing and thrusting the female’s snout and swollen abdomen with its snout. Only the mature male could attract the female successfully.

3. Inviting: The mature female slightly opened its mouth which acts as an invitation for the mature male. The male then wrapped its body around the female.

4. Snout-gripping: The male gripped the female’s snout with its jaws, remaining in the position for 3-7 sec in *G. pictus* and 35-43 sec in *G. thyroideus*. It appeared no constant right or left position of the female snout which was gripped by the male. (Table 2, Fig. 1(d), Figs. 2(k)-(n)).

5. Rushing toward the water surface: When the female accepted the male, the male would grip on the female’s snout and ascend quickly together toward the water surface.

6. Turning around: As the spawning time approached, the ascending movements became more rapid when approaching higher in the water column. Eventually, the mature male leading the female turned around.

7. Spawning: In an instant, as the mature male turned around, the female released the eggs and the male would also ejaculate a cloud of gametes (without spawning in *G. thyroideus*). After spawning, the fertilized eggs would float on the water.

8. Separating and settling to the bottom: The male loosened its grip on the female’s snout, and settled individually to the bottom.

G. thyroideus also exhibited similar pre-spawning behaviors as *G. pictus*, but showed more aggressive behaviors between the males than *G. pictus*. Mating between the female and male for both species occurred mainly at night (8:00 PM-2:00 AM).

IV. DISCUSSION

The type of reproductive mating of the moray species showed the difference in body size. Large-sized moray species seem to show one male one female mating type. The maximum total length in records for *Gymnothorax javanicus* is 300 cm, *G. kidako* is 92 cm, *G. pictus* is 140 cm, *G. thyroideus* is 73.2 cm. Although there are reports of *Gymnothorax javanicus* and *G. kidako* were being entwined around one another in the pre-spawning sequences of mating, it was difficult to observe or confirm if gametes were released and spawning had occurred (Brock, 1972, Moyer and Zaiser, 1982). The mate of *G. pictus* or *G. thyroideus* in our study also entwined around one another before spawning. Nevertheless, the smaller-sized species tend to exhibit group spawning behaviors (the recorded maximum
Fig. 2. The pre-spawning behavioral sequence of *Gymnothorax thysoideus* (a-c) searching (d-h) courting (i-j) inviting (k-n) snout-gripping (o) rushing toward the water surface.
size of Gymnothorax herrei and Uropterygius macrocephalus were reported to be 30 cm and 47 cm, respectively. Group spawning had been reported between Uropterygius necturus and Gymnothorax herrei, whereby the males entwined around the female dorsally and would bite the base of the female’s head (Moyer and Zaiser, 1982, Ferrais, 1985). However, we speculate that the mating type of peppered or greyface moray is one female-one male strategy (Table 1). We first recorded the distinctive and various snout-gripping behaviors of G. pictus and G. thyroideus in the laboratory aquaria, despite some other reproductive behaviors of moray eels had been observed in the field (Table 1).

There is a significant difference in the duration of snout-gripping between Gymnothorax pictus (ca. 3 sec.) and G. thyroideus (35-43 sec.). The artificial aquarium’s environment does not seem to be suitable for the reproduction or spawning of these two eel species. Space is too small, lack of water depth, especially for the deeper habitat species. Gymnothorax thyroideus. However, Gymnothorax pictus generally inhabit the shallow waters near the tide line, so there can be some successful cases of natural spawning. Moray eels usually need to swim up to the water surface for spawning. After mating, the moray species that inhabit deeper waters might require more time to go upstream to the sea surface.

Fishelson (1992) reported the comparative gonad morphology and sexuality of the Muraenidae, and inferred G. pictus and G. thyroideus these two species of moray eels might be simultaneous hermaphrodites. But, we found the G. pictus and G. thyroideus are gonochoristic based on histological study of their gonads.

In conclusion, the snout-gripping is the most distinctive pre-spawning behavior to confirm the success of mating pair formation naturally, which has been rarely described in moray eels or the other coral reef fishes.

ACKNOWLEDGEMENTS

We are thankful to Mr. Wei-Jen Chen, Chao-Sen Yang and Miss Shih-Ying Tien for helping us to collect and feed the related moray eels in the laboratory of National Taiwan Ocean University. These studies were partly supported by University of Malay Research Grant (UMGP, RP018B-16SU) from the University of Malaya. The authors would like to thank National Taiwan Ocean University (NTOU) and University of Malaya (IOES, UM) for providing research facilities. This study forms part of the master thesis undertaken by the first author. We would also like to thank the anonymous reviewers for their suggestions and constructive comments.

REFERENCES

